I. 引言 现代问题通常涉及复杂、不确定和动态的环境。传统的计算方法依赖于精确的输入和确定性过程,而这些对于现实世界的问题并不总是可行的。人工智能 (AI) 在数据驱动的任务中表现出色,而软计算则提供了处理模糊性和不完整信息的强大工具。本文研究了结合人工智能和软计算优势的混合方法。这些系统在同时需要严格精度和适应性的场景中特别有用。 背景 人工智能专注于通过机器学习、自然语言处理和机器人技术复制人类智能。当提供结构化数据和预定义规则时,它在模式识别和决策等任务中表现出色。软计算涉及模糊逻辑、神经网络和遗传算法等方法,所有这些方法都优先考虑近似推理和学习,而不是严格的基于规则的系统。这些技术对于具有不确定性或模糊性的问题很有价值。
主要关键词