上一次SOCTA会议在以下场所成功组织:SOCTA2016:印度斋浦尔的Amity University Rajasthan。(2016年12月28日至30日)SOCTA2017:印度北方邦的Bundelkhand University Jhansi。(2017年12月22日至24日)SOCTA2018:印度旁遮普邦Jalandhar的B R Ambedkar Nit博士。(2018年12月21日至23日)SOCTA2019:印度比哈尔邦巴特纳国家理工学院国家理工学院。(2019年12月27日至29日)SOCTA2020:在虚拟模式下(由于大流行19)。(2020年12月25日至27日)SOCTA2021:印度印度信息技术研究所,印度。(2021年12月17日至19日)SOCTA2022:喜马al尔邦大学Summerhill,印度西姆拉。(2022年12月16日至18日)SOCTA2023:印度印度信息技术研究所UNA,印度。(12月24日至26日,2023年)第9系列,SOCTA2024在印度拉贾斯坦斋浦尔国家理工学院(MNIT)在印度斋浦SOCTA2024是在印度旁遮普邦Jalandhar的B R Ambedkar Nit博士的技术合作中组织的; Shobhit认为大学Meerut和科学,技术,工程与管理(STEM) - 研究学会。会议有5个主题演讲,由来自世界各地的著名院士和从业人员发表。总的来说,在18个口头演讲会议上介绍了12个不同的会议不同主题的技术论文。我们感谢Springer Plc。给我们机会在网络和系统(LNNS)中发表诉讼的机会。我们真诚地感谢您持续的支持,鼓励和信任我们。提交给SOCTA2024的所有论文都经历了同行评审过程,随后进行了修订,然后最终被接受。SOCTA系列成功的荣誉,请参阅我们的导师,主题演讲和邀请演讲者,首席嘉宾,荣誉嘉宾,顾问委员会成员,顾问委员会(国家与国际),计划委员会成员,Springer团队作为出版伙伴(特别是Aninda Bose,特别是Aninda Bose,尤其是执行编辑 - 跨学科应用科学委员会;我们也期待在即将到来的SOCTA系列中获得这种出色的支持。我们很高兴通知您,SOCTA系列中的下一个,即SOCTA 2024计划在印度的Mnit斋浦尔拉贾斯坦邦。期待在SOCTA系列中做出重大贡献……
讲座-3 模糊逻辑当我们说模糊逻辑时,那就是我们在物理设备中遇到的变量,模糊数字用于描述这些变量,并且在设计控制器时使用此方法,它就是模糊逻辑控制器。 - 让我们采取三个陈述:零,几乎零,接近零。 - 零恰好是零,真值为 1 - 如果它几乎为 0,那么我可以认为在负 1 到 1 之间,0 附近的值是 0,因为这几乎为 0。
由外部磁场造成的软机器因其与生物体和复杂环境相互作用的潜力而引起了显着关注。但是,它们的适应性和功能通常受到操作过程中刚性磁化的限制。在这项工作中,我们在操作过程中引入了动态可重编程的磁性软计算机,并通过各种磁场的协同作用在操作过程中进行原位重新确定的磁化功率。可振荡的谐振电路集成到机体中,从而通过不同频率的高频频率实现了对特定区域的可寻址和可感知的加热。机身由由低熔点合金和NDFEB微粒制成的微型头。加热时,合金液体会固定,允许在40吨脉冲编程场下旋转NDFEB微粒。冷却后,新的配置被锁定在适当的位置。此重编程过程对于单个或多台机器同样有效,从而实现了多种机器的多种模式变形和多个机器的合作。此外,通过结合可寻址的热致动,我们将示意多个机器人的原位组装。这项工作可能使具有增强功能的磁性软计算机可以实现。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
在本文中,我们介绍了两种受自然过程启发的混合元启发式算法:蜂群优化 (BCO) 和鲸鱼优化算法 (WOA)。BCO 算法由 Karaboga 于 2005 年首次提出,借鉴了蜜蜂的觅食行为。它以简单和有效解决各种优化问题而闻名。我们将概述 BCO 算法,包括其在群体智能背景下的原理和修改。这种技术研究由众多相互作用的元素组成的分散系统,其探索能力尤为突出。Mirjalili 和 Lewis 于 2016 年提出的鲸鱼优化算法模仿了座头鲸的气泡网狩猎行为。该算法采用群体智能来避免局部最优,并通过模拟渔网方法平衡探索和开发。它的设计有助于实现最优解并有效避免局部陷阱。我们将 BCO 和 WOA 混合成一种新算法,称为 ABCWOA。该混合算法在 16 个优化任务中进行了测试,频率分别为 (100、200、500、1000)。结果表明,ABCWOA 有效地达到了最优解,通常通过在大多数任务中实现较低的最小值 (𝑓_𝑚𝑖𝑛) 来优于传统搜索算法。
I. 引言 现代问题通常涉及复杂、不确定和动态的环境。传统的计算方法依赖于精确的输入和确定性过程,而这些对于现实世界的问题并不总是可行的。人工智能 (AI) 在数据驱动的任务中表现出色,而软计算则提供了处理模糊性和不完整信息的强大工具。本文研究了结合人工智能和软计算优势的混合方法。这些系统在同时需要严格精度和适应性的场景中特别有用。 背景 人工智能专注于通过机器学习、自然语言处理和机器人技术复制人类智能。当提供结构化数据和预定义规则时,它在模式识别和决策等任务中表现出色。软计算涉及模糊逻辑、神经网络和遗传算法等方法,所有这些方法都优先考虑近似推理和学习,而不是严格的基于规则的系统。这些技术对于具有不确定性或模糊性的问题很有价值。
人工智能在医疗保健中的应用比以往任何时候都更快,因为深度学习和计算的快速发展。曾经相信,关于医疗保健系统的选择仅应由医生和其他医疗专业人员做出。机器学习的出现扭转了这一趋势,增加了对创建医疗保健支持系统的算法的依赖。许多人工智能(AI)预测算法已经开发出来,以预测其早期疾病。此外,数据科学也应用于许多其他医疗领域,例如智能预测模型和临床数据摘要。
背景:与机器学习集成(ML)集成的量子计算在包括医疗保健在内的各个领域都提供了新颖的解决方案。分类中量子计算与ML之间的协同作用利用了唯一的数据模式。尽管有理论的优势,但量子计算在小型医学数据集上的经验应用和有效性仍未得到充分影响。方法:这项来自高等医院的回顾性研究使用了有关早期结直肠癌的数据,从2008年到2020年,具有93个特征和1501例患者,以预测死亡率。我们将量子支持向量机(QSVM)模型与经典的SVM模型进行了比较,就特征数量,训练集数量和结果比进行了比较。我们根据接收器操作特征曲线(AUROC)中曲线下的区域(AUROC)评估了模型。结果:我们观察到死亡率为7.6%(1253名受试者中的96个)。我们使用11个临床变量(包括癌症阶段和化学疗法史)生成了死亡率预测模型。我们发现,常规方法和量子方法之间的AUROC差异是前11个变量的最大值。我们还显示了QSVM中的AUROC(平均[标准偏差],0.863 [0.102])的表现优于常规SVM中的所有试验次数(0.723 [0.231])。与常规SVM相比,QSVM即使在不平衡的情况下,QSVM也与AUROC一致。结论:我们的研究强调了量子计算改善医疗保健中预测性建模的潜力,尤其是对于有限的可用数据的稀有疾病。与常规方法相比,量子计算的优势,例如希尔伯特空间的探索,促进了优越的预测性能。
基于嵌入方法的图形表示可以更轻松地分析网络结构,可用于各种任务,例如链接预测和节点分类。这些方法已被证明在各种环境中都是有效的,并且已成为图形学习领域的重要工具。这些方法易于实施,它们的预测会产生可解释的结果。但是,大多数图形嵌入方法仅依赖于图形结构信息,并且不考虑节点/边缘属性,从而限制其适用性。在本文中,我们提出了图理论设计,以将节点和边缘属性纳入拓扑结合,从而使图形装饰方法无缝地在属性图上无缝工作。为了找到给定属性图的理想表示形式,我们提出了原始网络中的增强特殊子图结构。我们讨论了所提出的方法的潜在挑战,并证明了其一些理论局限性。我们通过比较15个标准生物信息学数据集上的最先进的图形分类模型来测试方法的功效。与原始图上的结果相比,在增强图上,在增强图上的分类精度最高可提高高达5%的分类精度。©2023 Elsevier B.V.保留所有权利。