本文是一系列研究,该系列研究了从其新生的原始磁盘(PPD)中积聚的行星的观察性外观。我们评估了在辐射流体动力(RHD)类似物中确定的气温分布与通过蒙特卡洛(MC)辐射转运(RT)方案重新计算的差异。我们的MCRT模拟是针对全局PPD模型进行的,每个模型由嵌入在轴对称全局磁盘模拟中的局部3D高分辨率RHD模型组成。我们报告了两种方法之间的一致性水平,并指出了几个警告,这些警告阻止了温度分布与我们各自的选择方法之间的完美匹配。总体而言,一致性水平很高,高分辨率区域的RHD和MCRT温度之间的典型差异仅为10%。最大的差异接近磁盘光球,光学密集区域和薄区域以及PPD的遥远区域之间的过渡层,偶尔超过40%的值。我们确定了这些差异的几个原因,这些原因主要与用于流体动力模拟(角度和频率平衡以及散射)和MCRT方法(忽略内部能量对流和压缩和扩展工作的典型辐射转移求解器的一般特征有关)。这提供了一种清晰的途径,以减少未来工作中系统的温度不准确。基于MCRT模拟,我们最终确定了整个PPD的通量估计值的预期误差和从其环境磁盘中积聚气体的行星的预期误差,而与山相中的气体堆积量和使用模型分辨率无关。
摘要。精确的高精度磁场测量对许多应用来说都是一项重大挑战,包括研究空间等离子体的星座任务。仪器稳定性和正交性对于在不进行大量交叉校准的情况下对星座中不同卫星进行有意义的比较至关重要。这里我们描述了 Tesseract 的设计和特性 - 一种专为低噪声、高稳定性星座应用而设计的磁通门磁强计传感器。Tesseract 的设计利用了定制低噪声磁通门芯制造方面的最新发展。六个定制的赛道磁通门芯牢固而紧凑地安装在一个坚固的三轴对称基座内。 Tesseract 的反馈绕组配置为四方 Merritt 线圈,以在传感器内部创建一个大的均匀磁零点,其中磁通门磁芯保持在接近零的磁场中,而不管环境磁场如何,以提高磁芯磁化循环的可靠性。 Biot-Savart 模拟用于优化反馈 Merritt 线圈产生的磁场的均匀性,并通过实验验证其沿赛道磁芯轴线的均匀性在 0.42 % 以内。使用线圈系统内装满干冰的绝缘容器来测量传感器反馈绕组的热稳定性。发现反馈绕组的温度灵敏度在 13 到 17 ppm ◦ C − 1 之间。传感器的三个轴在 −45 至 20 ◦C 的温度范围内保持正交性,误差不超过 0.015 ◦。Tesseract 的核心在 1 Hz 时实现了 5 pT √ Hz −1 的磁本底噪声。Tesseract 将在 ACES-II 探空火箭上进行飞行演示,目前计划于 2022 年底发射,并将再次搭载在 TRACERS 卫星任务上,作为 MAGIC 技术演示的一部分,目前计划于 2023 年发射。
背景。形成大质量恒星会发射磁源流出物,这实际上是寻找大质量恒星形成地点的标志。然而,直到最近几年,才有可能对这种磁驱动流出物的形成和传播进行理论和观察研究。目的。通过这项工作,我们旨在详细研究从大质量恒星形成早期阶段驱动高度准直流出的机制,以及这些过程如何受到形成大质量恒星的原生环境特性的影响。方法。我们进行了一系列 31 次模拟,旨在建立这些机制的统一理论图景,并确定不同环境的影响如何改变它们的形态和动量输出。磁流体动力学模拟还考虑了欧姆耗散作为非理想效应、自重力和尘埃和气体热吸收和发射的扩散辐射传输。我们从一个坍缩的云核开始,它被最初均匀的磁场穿过,并且正在缓慢旋转。我们在球坐标系中使用了二维轴对称网格。结果。在模拟中,我们可以清楚地区分快速的磁离心发射和准直喷流(速度 ≳ 100 km s − 1 )和由磁压驱动的更宽的磁塔流,后者会随时间而变宽。我们详细分析了流动的加速度,以及它在几百个天文单位的距离处被磁力重新准直。我们量化了磁制动对外流的影响,这会缩小系统后期演化的外流腔。我们发现,尽管自重力和介质热力学不可扩展,但我们的结果会随着云核的质量而变化,原则上可以用于这种质量的一系列值。我们观察到,对于大质量原恒星的诞生环境的各种假设,都存在相同的喷流驱动机制,但随着时间的推移,它们的形态和机械反馈会发生变化,从而达到更大的尺度。
确定施加载荷的位置点,以避免航空航天应用中使用的薄截面发生扭曲。 理解区分曲梁中中性轴和质心轴的概念。 理解为分析受扭转的非圆形杆而开发的类比模型,以及分析滚动体之间产生的应力和三维物体中的应力。 UNIT-I:应力分析:点的应力状态、任意平面上的应力分量、主应力、应力不变量、莫尔圆、最大剪切平面、八面体应力、平面应力状态、平衡微分方程、边界条件。应变分析:点附近的变形、点的应变状态、剪应变分量的解释、应变和主应变的变换、兼容条件。平面应变状态。线性应力-应变-温度关系:内能密度和互补内能密度。各向异性、正交各向异性和各向同性弹性的胡克定律。各向同性材料的热弹性方程 UNIT-II 剪切中心:轴对称和非对称截面的弯曲轴和剪切中心-剪切中心。薄壁截面的剪切应力、箱梁的剪切中心非对称弯曲:非对称弯曲梁的弯曲应力、非对称弯曲导致的直梁挠度。 UNIT-III:曲梁理论:温克勒-巴赫周向应力公式 – 局限性 – 校正系数 – 曲梁的径向应力 – 闭环承受集中和均匀载荷 – 链环中的应力。第四单元:扭转:线性弹性解,一般棱柱形杆——实心截面,如圆形、椭圆形、三角形和矩形,普朗特弹性膜(皂膜)类比;窄矩形截面,空心薄壁扭转构件,多连通截面。第五单元:接触应力:介绍,确定接触应力的问题,接触应力解所基于的假设;主应力表达式;计算接触应力的方法,点接触物体的挠度;两个物体在窄矩形区域接触的应力(线接触)垂直于面积的载荷,两个物体线接触的应力,垂直于和切向于接触面积的载荷。
本论文对旋转叶盘与柔性壳体之间的行波速度不稳定性进行了分析。这种与结构接触的相互作用在某些情况下可能发生在高速涡轮机械中,例如航空发动机或压缩机,并且可以通过将转子的动能旋转到振动中,以不稳定的方式放大耦合转子-定子系统的振动。为了使涡轮机械安全运行,必须避免行波速度重合,并分析发生相关不稳定性的可能性。以前,大多数航空发动机的壳体都附有齿轮箱等附加结构。这些附件使机壳失调,从而降低了响应中的行波分量,从而使能量传递机制效率降低,降至由其他系统参数(例如阻尼和旋转部件与静止部件之间的间隙大小)定义的非临界阈值水平以下。新型航空发动机设计趋向于轴对称机壳,对于这种机壳,行波速度不稳定性的研究变得更加重要。在文献中,少数处理与叶盘接触的弹性定子的作者没有研究行波速度不稳定性的可能性,这可能是由于缺乏对现有设计的适用性,但大多数研究人员仅分析了具有刚性定子的系统。对于具有弹性转子和定子的系统,这种方法是不够的,因为包含定子动力学会导致耦合系统的临界速度数量增加。在本论文中,转子和定子被分别建模为具有线性动力学的结构。为了减少微分方程的数量,采用模态模型将计算工作量限制在相关的参与模式中。叶片盘和定子之间的接触由冲击摩擦定律建模,包括冲击损失。在转子-定子系统分析中加入壳体动力学的影响进行了分析描述,在数值模拟中进行了计算,并在实验中进行了演示。对于所研究的不稳定性,预测结果与实验结果之间取得了良好的定性一致性。数值预测和实验数据都表明存在行波速度不稳定性,并验证了所选方法。研究结果表明,行波速度不稳定性是存在的,并且它是一个潜在的安全威胁,必须通过设计或选择操作条件来避免。
本报告介绍了美国海军濒海作战潜艇 (SSLW) 的概念探索和开发。该概念设计是在弗吉尼亚理工大学为期两个学期的船舶设计课程中完成的。SSLW 要求基于对能够进入濒海地区的技术先进、隐蔽且小型的潜艇的需求。任务要求包括特种部队的运送、提取和支援、布雷和对抗措施、防御性反潜战、搜索和打捞以及 AUV 支援。潜艇需要具有多个灵活的任务包。在进行大量技术研究和定义后,使用多目标遗传优化 (MOGO) 完成概念探索权衡研究和设计空间探索。此优化的客观属性是成本、风险(技术、成本、进度和性能)和军事效能。优化的结果是一系列成本风险效益边界,用于根据客户对成本、风险和效益的偏好选择替代设计并定义作战需求 (ORD1)。SSLW ATLAS 是一种高风险、双层甲板的替代方案,与非主导边界不同。选择该设计是为了提供一个具有挑战性的设计项目。成本完全符合要求,是一艘高效的潜艇。SSLW ATLAS 的特点如下。ATLAS 具有轴对称船体形状。其高度自动化使海军人员远离危险并降低了成本。小尺寸使其成为一种多功能设计,能够进入以前无法进入的区域。三个有效载荷接口模块使 ATLAS 具有高度可升级性,能够执行许多不同的任务。它适用于秘密行动,必要时仍能用 8 枚 Mark 50 鱼雷自卫。概念开发包括船体形式开发、结构有限元分析、推进和电力系统开发和布置、总体布置、机械布置、战斗系统定义和布置、平衡多边形分析、成本和可生产性分析以及风险分析。最终概念设计在成本和风险约束内满足 ORD 中的关键操作要求,还需要进行额外工作来评估波浪中的浅水运动;评估机动和控制;更好地定义和评估有效载荷包和母舰的操作;重新评估电池功率特性;并更好地改进耐压船体外部的结构。
上下文。原月球磁盘中尘埃的表征对于更好地理解形成行星的组成和这些系统中的尘埃颗粒演化很重要。目标。我们的目的是通过分析VLT/Sphere的Zimpl和Irdis子仪器,通过分析Zimpl和Irdis子仪器获得的多波长度散射光强度和极化图像,以准确表征面对面过渡磁盘中灰尘的性质。方法。我们从ESO档案中使用了RX J1604的档案数据,并仔细纠正了仪器效应的极化信号,还考虑了星际极化。我们测量了r,j和h频段中的方位角极化qφ(r)的磁盘的径向曲线,并由于视力和其他效果而描述了我们数据中数据中的变化。,我们通过将数据与观测值的点扩散函数进行比较,从而得出了磁盘,质量Qφ(r)的固有极性分析。我们还测量了磁盘强度,i磁盘(R),并为J和H带的参考星差成像。这为r,j和h频段提供了磁盘集成的极化强度ˆqφ / i⋆,以及对于j和h频段的平均分数极化,平均分数极化。我们研究了散射光和恒星附近的热尘产生的阴影的方位角依赖性。最终将衍生的结果与模型计算进行了比较,以限制RX J1604中反射粉尘的散射特性。结果。92±0。RX J1604是北斗源,数据显示出不同种类的可变性。然而,对重复调查的详细分析表明,结果不受浸入事件或大气看差异的影响。我们得出了固有极化强度ˆqφ(r) / i⋆的精确径向磁盘轮廓,并由于灰尘不透明度的波长依赖性而测量不同频段的不同轮廓半径。磁盘集成的极化为ˆqφ / i = 0。04%的R频段和1。 51±0。 j频段为11%,表明磁盘的极化反射率的红色。 磁盘的强度是i磁盘 / i = 3。 9±0。 在J频段中为5%,而J带的分数极化为⟨ˆpφ⟩= 38±4%,H频段为42±2%。 与Rx J1604的IR多余的比较产生了大约λI≈0的明显磁盘反照率。 16±0。 08。 我们还发现,在R频段数据中看到的先前描述的阴影可能受到校准误差的影响。 我们使用用于过渡磁盘的尘埃散射模型得出,近似于散射反照率ω≈0的J带值。 5,散射不对称g≈0。 5,并散射极化P最大≈0。 7粉尘。 结论。 RX J1604的明亮磁盘具有非常简单的轴对称结构,因此非常适合作为基准对象,用于精确的光极化测量。 我们得出了磁盘极化的值,⟨ˆpφ⟩和明显的磁盘反照率λi,用于J频段。04%的R频段和1。51±0。j频段为11%,表明磁盘的极化反射率的红色。磁盘的强度是i磁盘 / i = 3。9±0。在J频段中为5%,而J带的分数极化为⟨ˆpφ⟩= 38±4%,H频段为42±2%。与Rx J1604的IR多余的比较产生了大约λI≈0的明显磁盘反照率。16±0。08。我们还发现,在R频段数据中看到的先前描述的阴影可能受到校准误差的影响。我们使用用于过渡磁盘的尘埃散射模型得出,近似于散射反照率ω≈0的J带值。5,散射不对称g≈0。5,并散射极化P最大≈0。7粉尘。结论。RX J1604的明亮磁盘具有非常简单的轴对称结构,因此非常适合作为基准对象,用于精确的光极化测量。我们得出了磁盘极化的值,⟨ˆpφ⟩和明显的磁盘反照率λi,用于J频段。因为⟨ˆpφ⟩和λI主要取决于灰尘散射参数,而仅弱于磁盘几何形状,因此这些参数定义了ω和p max之间以及ω和g之间的灰尘散射参数的紧密关系。偏光反射率的正r到J带颜色(量qφ / i⋆)j≈1。64·(ˆqφ / i⋆)r,主要是由于尘埃参数的波长依赖性的结果,因为预计散射几何形状对于不同颜色的散射几何形状非常相似。这项工作证明了对于确定灰尘散射参数的准确光偏光测量的潜力,该测量强烈限制了灰尘的物理特性。
本报告介绍了美国海军濒海作战潜艇 (SSLW) 的概念探索与开发。该概念设计是在弗吉尼亚理工大学为期两个学期的船舶设计课程中完成的。SSLW 要求基于对能够进入濒海地区的技术先进、隐蔽且小型的潜艇的需求。任务要求包括特种部队的运送、撤离和支援、布雷和对抗措施、防御性反潜战、搜索和打捞以及 AUV 支援。潜艇需要具有多个灵活的任务包。在进行了大量技术研究和定义后,使用多目标遗传优化 (MOGO) 完成概念探索权衡研究和设计空间探索。此优化的客观属性是成本、风险(技术、成本、进度和性能)和军事效能。此优化的产物是一系列成本-风险-效能边界,用于根据客户对成本、风险和效能的偏好选择替代设计并定义作战要求 (ORD1)。 SSLW ATLAS 是一种来自非主导前沿的高风险、双层替代方案。选择该设计是为了提供一个具有挑战性的设计项目。由于成本在要求之内,它是一艘高效的潜艇。SSLW ATLAS 的特点如下。ATLAS 具有轴对称船体形状。其高度自动化使海军人员免受危险并降低了成本。小尺寸使其成为一种多功能设计,能够进入以前无法进入的区域。三个有效载荷接口模块使 ATLAS 具有高度可升级性并能够执行许多不同的任务。它适用于秘密行动,但如果有必要,它仍然可以用 8 枚 Mark 50 鱼雷自卫。概念开发包括船体形状开发、结构有限元分析、推进和电力系统开发和布置、总体布置、机械布置、战斗系统定义和布置、平衡多边形分析、成本和可生产性分析以及风险分析。最终的概念设计在成本和风险约束内满足 ORD 中的关键操作要求,还需要额外的工作来评估波浪中的浅水运动;评估机动和控制;更好地定义和评估有效载荷包和母舰的操作;重新评估电池电量特性;更好地改进耐压壳外部的结构。
现代纳米材料涂层工艺的特点是高温环境和复杂的化学反应,需要精确合成定制设计。这种流动过程极其复杂,除了粘性行为外,还具有传热和传质特性。智能纳米涂层利用磁性纳米粒子,可以通过外部磁场进行操纵。数学模型提供了一种廉价的洞察此类涂层动力学过程固有特性的方法。受此启发,在当前的工作中,开发了一种新的数学模型,用于双催化反应物种在轴对称涂层中扩散,该涂层包裹强制对流边界层流,该流来自浸没在饱和磁性纳米流体的均质非达西多孔介质中的线性轴向拉伸水平圆柱体。其中包括均相和异相反应、热源(例如激光源)和非线性辐射传输。部署了 Tiwari-Das 纳米级模型。使用 Darcy-Forchheimer 阻力公式来模拟多孔介质纤维的体积多孔阻力和二阶惯性阻力。磁性纳米流体是一种水性导电聚合物,由基础流体水和磁性 TiO 2 纳米粒子组成。TiO 2 纳米粒子是一种化学反应物质 (A),还存在第二种物质 (B)(例如氧气),它也发生化学反应。粘性加热和欧姆耗散也包括在内,以产生更物理上真实的热分析。这里提出的具有物质扩散(物质 A 和 B)的非线性守恒方程通过适当的流函数和缩放变量转换为一组非线性联合多阶 ODE。在 MATLAB bvp5c 程序中,使用四点 Gauss-Lobotto 公式求解上升非线性常微分边界值问题。使用 Adams-Moulton 预测校正数值方案(Unix 中编码的 AM2)进行验证。包括速度、温度、物质 A 浓度、物质 B 浓度、表面摩擦、局部努塞尔特数以及物质 A 和 B 局部舍伍德数的广泛可视化。关键词:Darcy-Forchheimer 模型;水性功能磁性聚合物;智能涂层流;二氧化钛纳米颗粒分数;非线性辐射;均相和非均相化学反应;数值;边界层包裹;努塞尔特数;舍伍德数。
2) M. Mounho、C. Fuksa、R. Clark、W. Brooks、A. Steiner、M. Hopkins、A. Neuber、J. Stephens,“新型真空绝缘体几何形状中的统计闪络概率特性” Phys. Plasmas 31, 080701 (2024)。3) T. Wright、D. Saheb、J. Hoebelheinrich、J. Mankowski、J. Dickens、A. Neuber、E. Schrock、J. Schrock、J. Stephens“用于 RF 生产的固态非线性传输线 PCB 的特性” IEEE Trans. Plasma Sci. 2024。4) M. Flynn、L. Vialetto、A. Fierro、A. Neuber、J. Stephens,“低温等离子体动力学模型中各向异性散射的基准计算” J. Phys. D: Appl. Phys. 57 , 255204 (2024)。5) R. Clark,M. Mounho,W. Brooks,M. Hopkins,J. Stephens,A. Neuber,“真空中阳极引发表面闪络的早期光发射的光谱研究” Phys. Plasmas 31 , 032112 (2024)。6) A. Fierro,A. Alibalazadeh,J. Stephens,C. Moore“流光放电的大规模并行轴对称流体模型” Comp. Plasma Phys. 305 , 109345 (2024)。7) N. Fryar,K. Schriner,J. Stephens,J. Dickens,A. Young,A. Neuber“对 Novec TM 4710 在通量压缩发生器中应用的适用性进行基准测试” IEEE Trans. Plasma Sci.第 1-6 页 (2024)。8) B. Esser、Z. Cardenas、JT Mockert、JC Stephens、JC Dickens、JJ Mankowski、AA Neuber、D. Friesen、D. Hattz、C. Nelson“接近速度和电极几何形状对浮动电介质静电放电的影响” IEEE Trans. Plasma Sci. 第 1-8 页,(2024)。9) N. Fryar、J. Stephens、J. Mankowski、J. Dickens、D. Hattz、N. Koone、A. Neuber“评估避雷针几何形状对强背景电场下雷电拦截功效的影响” AIP Adv. 14,045235 (2024)。 10)H. Spencer、D. Wright、A. Gregory、J. Mankowski、J. Stephens、J. Dickens、A. Neuber