高级应用有限元方法 C Ross,朴茨茅斯大学 工程结构分析 B. Bedenik 和 C. Besant 应用弹性 JD Renton,牛津大学 轴对称问题的有限元程序 C Ross 朴茨茅斯大学 iCurcuit 分析 JE. Whitehouse,雷丁大学 Conise 热力学 J. Dunning-Davies,船体控制与应用最优控制理论 D. Burghes 和 A Graham 工程材料的腐蚀与退化 H. McArthur 和 D. Spalding 衍射理论、天线与最优传输 R. Clarke 和 J. Bresant 电子工程中的数字滤波器与信号处理 SM Bozic 和 RJ Chance 机械系统动力学 C. Ross,大学朴茨茅斯大学 弹性梁与框架 JD Renton,牛津大学 电气工程数学 R. Clarke,伦敦帝国理工学院 工程数学 N. Challis 和 H. Gretton,谢菲尔德哈勒姆大学 工程热力学 G. Cole,赫尔大学 结构工程有限元程序 C Ross,朴茨茅斯大学 结构力学有限元技术 C. Ross,朴茨茅斯大学 结构概论 WR Spillers,新泽西理工学院 垃圾填埋场污染与控制 K. Westlake,拉夫堡大学 宏观工程 Davidson、Frankel、Meador,麻省理工学院 宏观工程与地球 U Kitzinger 和 EGFrankel 机械加工力学 P. Oxley 和 P. Mathew,新南威尔士大学 固体力学 C. Ross,朴茨茅斯大学 微电子学:基于微处理器的系统D. Boniface,朴茨茅斯大学 导弹制导与追踪 NA Shneydor,以色列理工学院,海法 面向对象技术与计算机系统再造 H. Zedan 工程师的弹性力学 CR Calladine,剑桥大学 压力容器:外压技术 C. Ross,朴茨茅斯大学 潮汐的秘密 JD Boon,弗吉尼亚海洋科学学院,美国 极端热力学 BH Lavenda,卡梅里诺大学,意大利 管道与明渠中的瞬态流,第二版* J. Fox,利兹大学
图1亚素纤维样组件的分辨率以及随后对相关的颜色编码方向分布函数(ODF)的估计。(a)R 2 -d分布,用于包含CSF和两个交叉WM种群的体素。5D P(r 2,d)据报道为R 2的3D对数散射图D,各向同性扩散性D ISO和轴向 - 径向 - 径向扩散率D K / D d r,其圆面积与通用r 2- d分量的重量成比例。颜色编码定义为:[r,g,b] = [cosφsinθ,sin ϕsinθ,cosθ] j d k -d⊥ /max /max(d,d,d,d,d,d,d,d,d,d,d,d,d,d,),其中(θ,ϕ)给出了每个轴对称d的方向。r 2 -d空间分为三个粗垃圾箱,称为“大”(蓝色体积),“薄”(红色体积)和“厚”(绿色体积)。落入“薄”箱中的成分被单打并解释为纤维。(b)每箱信号贡献的空间分布。中间地图显示了“大”(蓝色),“薄”(红色)和“厚”(绿色)垃圾箱中的分数种群,作为颜色编码的复合图像。最右图的重点是来自“薄”子集中的组件的信号贡献,f薄,(1- f thin)的补充给出了来自所有不用于ODF计算的所有组件的信号分数。交叉位置位置的体素,其分布在面板(a)中显示。(c)计算颜色编码的ODF的方案。r 2颜色的圆圈表示来自面板中信号的体素溶液的“薄”组件(b)。圆面积与W成正比,而[x,y,z]圆坐标被定义为[cos ϕsinθ,sin ϕsinθ,cosθ](左)或[cos ϕsinθ,sin ϕsinθ,cos cos cos ϕ] w(中和右)。在左图中,离散的r 2 -d组件显示在以1,000点(θ,ϕ)网格表示的单位球体上。首先通过公式(6)将P(r 2,d)组件的权重映射到网格,从而形成一个ODF字形,其半径沿r 2 -d概率密度沿给定(θ,ϕ)方向(中间)。按照ODF估计,方程(9)用于为每个网格点分配r 2,d ISO或dδ的平均值,并定义颜色ODF glyph(右)
对于军用飞机而言,燃气涡轮发动机制造商和最终用户面临的一个关键问题就是耐久性。尤其是加力燃烧段的条件非常恶劣,发动机喷嘴的设计寿命通常只有涡轮发动机其他硬件的一半。目前的喷嘴基于由密封件和襟翼制成的轴对称可变喷嘴。这些组件必须承受极端温度(通常超过 1000°C)以及与加力燃烧器点火相对应的快速热循环。此外,加力燃烧段通常具有燃烧功能不均匀的特点,这会在某些喷嘴瓣上产生热条纹。因此,这些部件会受到非均匀热流的影响,襟翼和密封件的重叠设计尤其明显,从而在整个宽度上产生高热应力。镍基合金通常用于发散襟翼和密封部件。严酷的热机械环境使镍基部件产生大量开裂,再加上高温 1 导致的蠕变变形。结果是部件拆卸增加,直接影响可操作性、维护和成本。军用发动机对热段部件更长使用寿命和更高推重比的追求为陶瓷材料打开了大门。陶瓷基复合材料 (CMC) 适用于暴露在高温(高达 1000°C)下的加力燃烧段,包括高热梯度。因此,人们继续对在军用燃气涡轮发动机中开发、测试和部署 CMC 感兴趣,一些开发已经取得成功。这是为 F/A-18 E/F 超级大黄蜂 2 战斗机提供动力的 F414 发动机喷嘴引入 SiC/C CMC 的情况,以及为阵风 3 战斗机提供动力的 M88 发动机喷嘴外襟翼引入 C/SiC CMC 的情况。考虑用于燃气轮机部件的 CMC 涵盖了通过化学气相渗透 (CVI)、溶胶凝胶路线、聚合物渗透和热解 (PIP) 和熔融渗透 (MI) 4 制造的各种纤维和基质。所得材料能够承受排气喷嘴的高温和热疲劳。然而,CMC 组件的耐久性与其抗氧化性直接相关,这会影响其热机械潜力并导致部件破裂。已经对几种 CMC 密封件进行了地面测试,并在具有代表性的全地面发动机寿命后测量了机械性能。近几年,斯奈克玛推进固体公司 (SPS) 开发了先进的 SiC/SiC 和 C/SiC 材料,包括多层编织和自密封基质。普惠公司和空军研究实验室正在考虑将这些材料用于 F100-PW-229 发动机喷嘴发散密封件,该密封件为 F16 和 F15 战斗机提供动力。本文介绍了发动机经验和后测试特性的结果。将讨论材料系统对燃气轮机喷嘴应用的适用性。
1. M. Magri 和 D. Riccobelli。初始应力固体的建模:不可压缩极限下的能量密度结构。SIAM 应用数学杂志,84(6):2342–2364,2024 年 2. D. Riccobelli、P. Ciarletta、G. Vitale、C. Maurini 和 L. Truskinovsky。脆性断裂背后的弹性不稳定性。物理评论快报,132:248202,2024 年 3. NA Barnafi、F. Regazzoni 和 D. Riccobelli。弹性体中松弛配置的重建:心脏建模的数学公式和数值方法。应用力学和工程中的计算机方法,423:116845,2024 4. D. Riccobelli、HH Al-Terke、P. Laaksonen、P. Metrangolo、A. Paananen、RHA Ras、P. Ciarletta 和 D. Vella。扁平和起皱的封装液滴:重力和蒸发引起的形状变形。物理评论快报,130(21):218202,2023 5. Y. Su、D. Riccobelli、Y. Chen、W. Chen 和 P. Ciarletta。电活性介电弹性体气球的可调变形。英国皇家学会学报 A,479(2276):20230358,2023 6. P. Ciarletta、G. Pozzi 和 D. Riccobelli。具有初始应力的弹性板的 F¨oppl–von K´arm´an 方程。英国皇家学会开放科学,9(5):220421,2022 7. D. Andrini、V. Balbi、G. Bevilacqua、G. Lucci、G. Pozzi 和 D. Riccobelli。轴突皮质收缩性的数学建模。脑多物理,3:100060,2022 8. D. Riccobelli。主动弹性驱动受损轴突中周期性串珠的形成。物理评论 E,104(2):024417,2021 9. D. Riccobelli、G. Noselli 和 A. DeSimone。围绕刚性约束盘绕的杆:螺旋和变位。皇家学会学报 A,477(2246):20200817,2021 10. D. Riccobelli 和 G. Bevilacqua。表面张力控制脑器官中脑回形成的开始。固体力学和物理学杂志,134:103745,2020 11. D. Riccobelli、G. Noselli、M. Arroyo 和 A. DeSimone。互锁和可滑动杆的轴对称薄板力学。固体力学和物理学杂志,141:103969,2020 12. D. Riccobelli 和 D. Ambrosi。肌肉的激活作为应力-应变曲线的映射。极端力学快报,28:37–42,2019 13. D. Riccobelli、A. Agosti 和 P. Ciarletta。论初始应力材料的弹性极小值的存在。皇家学会哲学学报 A,377(2144):20180074,2019 14. G. Giantesio、A. Musesti 和 D. Riccobelli。横向各向同性超弹性材料中主动应变和主动应力的比较。弹性杂志,137(1):63–82,2019 15. D. Riccobelli 和 P. Ciarletta。具有残余应力的软不可压缩球体的形状转变。固体数学和力学,23(12):1507–1524,2018 16. D. Riccobelli 和 P. Ciarletta。曲折肿瘤血管的形态弹性模型。国际非线性力学杂志,107:1–9,2018 17. D. Riccobelli 和 P. Ciarletta。软弹性层中的瑞利-泰勒不稳定性。皇家学会哲学学报 A,375(2093):20160421,2017 18. D. Ambrosi、S. Pezzuto、D. Riccobelli、T. Stylianopoulos 和 P. Ciarletta。实体肿瘤是多孔弹性固体,在生长过程中具有化学机械反馈作用。弹性杂志,129(1-2):107–124,2017
上下文。原月经磁盘由于角动量保护而在其母体分子云周围形成新生恒星。随着它们逐渐发展和消散,它们也形成行星。尽管许多建模效果都专门用于它们的形成,但它们的世俗进化问题,从所谓的0类嵌入阶段到II类阶段,据信被认为是隔离的II级阶段,但仍然很熟悉。目标。我们旨在探索嵌入式阶段与II类阶段之间的演变。我们着重于磁场演化以及磁盘与包膜之间的长期相互作用。方法。我们使用GPU加速IDEFIX进行3D,正常,非理想的磁性水力动力学(MHD)世俗核心崩溃模拟,该模拟涵盖了赛车前核心的系统进化,直到第一次降低了液压核心和脉冲定位后,直到100 kyr的100 kyr降低,同时又垂直地定位了垂直的垂直和垂直的效果。 au)正确解决磁盘内部动力学和非轴对称扰动。结果。磁盘的演化导致开普勒旋转中的幂律气体表面密度,该旋转延伸至几个10 au。在初始塌陷期间,磁盘被困在磁盘中的磁性弹力从磁盘形成下的100 mg降低到1 mg,到1 mg。在第一个静水压核形成后,系统分为三个阶段。结论。第一阶段,具有较小的(〜10 au),不稳定,强烈积聚(〜10-5m⊙yr -1)磁盘,在第一阶段中失去了磁性弹力,第二阶段,第二阶段,磁性磁盘通过平稳的磁盘呈圆形,并通过囊罩的速度呈粒料,并具有感知的动量,并具有感知的动量,并具有一定的感光性,并具有一定的感光性,并具有一定的固定磁盘。 Au磁盘在几个10-7 m⊙yr -1处积聚。 初始各向同性包膜最终会进食大规模扩展的吸积流液,其吸积速与原恒星相似(〜10-6 m yr-1)。 一些流媒体材料与磁盘的外边缘碰撞并产生吸积冲击,但材料的一小部分土地在磁盘表面上没有产生任何明显的不连续性。 虽然初始磁盘尺寸和磁化是通过磁制动设定的,但自我实现最终会驱动吸积,因此磁盘最终以重力调节状态。 这种从磁制动到自我重力的演变是由于磁盘沉降后气体和磁场之间的弱耦合所致。 在I类阶段末端(B z〜1 mg)的弱磁场是磁盘中磁性频率稀释的结果,因为它从其初始相对较小的尺寸膨胀。 这种膨胀不应将其解释为粘性膨胀,因为它是由具有较大特定角度动量的大规模彩流人的新吸收材料驱动的。第一阶段,具有较小的(〜10 au),不稳定,强烈积聚(〜10-5m⊙yr -1)磁盘,在第一阶段中失去了磁性弹力,第二阶段,第二阶段,磁性磁盘通过平稳的磁盘呈圆形,并通过囊罩的速度呈粒料,并具有感知的动量,并具有感知的动量,并具有一定的感光性,并具有一定的感光性,并具有一定的固定磁盘。 Au磁盘在几个10-7 m⊙yr -1处积聚。初始各向同性包膜最终会进食大规模扩展的吸积流液,其吸积速与原恒星相似(〜10-6 m yr-1)。一些流媒体材料与磁盘的外边缘碰撞并产生吸积冲击,但材料的一小部分土地在磁盘表面上没有产生任何明显的不连续性。虽然初始磁盘尺寸和磁化是通过磁制动设定的,但自我实现最终会驱动吸积,因此磁盘最终以重力调节状态。这种从磁制动到自我重力的演变是由于磁盘沉降后气体和磁场之间的弱耦合所致。在I类阶段末端(B z〜1 mg)的弱磁场是磁盘中磁性频率稀释的结果,因为它从其初始相对较小的尺寸膨胀。这种膨胀不应将其解释为粘性膨胀,因为它是由具有较大特定角度动量的大规模彩流人的新吸收材料驱动的。