这个未成年人可以帮助您确定社会,环境和气候不公正现象,并创造性地思考如何促进更公平和环保的社会。它介绍了各种概念镜头,包括气候正义,环境伦理,科学和技术研究(包括基于行动的研究”),农业生态学,非统治性,生物文化保护,现场哲学和历史研究,以研究公正和可持续未来的中心价值。您将学会确定促进研究和创新的多样化,公平,可持续和包容性准则以及负责任的技术设计的复数价值。您还将有机会考虑在他们自己的纪律培训的背景下这意味着什么。
“人类食品系统是环境中生物多样性丧失的巨大驱动力。同时,我们的食品系统中的生物多样性维持了人类所依赖的营养。”“我希望这些信息可以帮助提供指导并确定解决方案,以便我们的粮食系统变得更加可持续,从而使人类健康和生态系统受益。”
• AE 3501 Aerospace Systems Engineering Practice Prereqs: ME2150 and ME2700 and ME2911(C) and AE2500 and AE2550 • AE 3511 Spacecraft Engineering Practice Prereqs: AE3501 • AE 3520 Aerodynamics Prereqs: AE2500 and MA3160 and (ME2911 or MEEM2911) • AE 4540航空航天推进预告:(AE3520和AE4530)或MEEM3201或ME3201•AE 4550号航天器热工程预制剂:AE3520和AE3520和AE3521•AE 4560 AE 4560 AEROPSACE材料和结构材料和结构材料:AE2550和MEEM2550和MEEM21550和MEEM21550•MEEM21550•MEEM21550•航天器动力与对照(SD&C)预言:AE4570(C)和(MEEM3750或ME3750)•ME/MEEM 4202施加的流体机械和热传输(3)prereqs:MeEM3201和(MEEM3201和(MA3520(MA3520)(MA3520(C)或MA3521(C)或MA3521(C)或MA35530(C)或MA35530(C)或MA3530(C)060(C)或MA3530(C)(C)流体工程。(3) Prereqs: MEEM3201(c) • ME/MEEM 4230 Compressible Flow/Gas Dynamics (3) Prereqs: MEEM3201 • ME/MEEM 4701 Analytical & Experimental Modal Analysis (4) Prereqs: MEEM3750 • ME/MEEM 4720 Space Mechanics (3) Prereqs: MEEM2700 o or AE 4570 Space Mechanics Prereqs: MEEM/ME 2700•我/MEEM 4820航空航天的介绍(3)预先QS:MEEM3201•ME/MEEM 5180复合材料的机制(3)PREREQS:MEEM4901(C)(C)或ENT4950(C)或ENT4950(C)•MSE 4430复合材料(MSE 4130•MEEM/MESMSE/MES21100或MES210000或MES210000•MES210000或MES210000)材料的中间力学(3)预言:MEEM2150•ME/MEEM 4170材料在机械学中的失败(3)prereqs:MEEM3501或MEEM3400•ME/MEEM 4180工程生物力学(3)PREREQS:MEEM2150和MEEM2150和MEEM2700•MEEM2700•MEEM2700•MEEM 4201(3)我/MEEM 4650质量工程(3)prereqs:MEEM3600(C)和(MA3710或MA3720或MA2710或MA2710或MA2720)•ME/MEEM 4702冲击和振动(3)preereqs :( Meem3911和Meem3750)和Meem3750和Meem3750)或Meem4775•Meem4775•MeEm/Meem 4770 andics and Sotionics and Quist:3) MA2160•ME/MEEM 4705机器人技术介绍(4)先进QS:MEEM3750•ME/MEEM 4707自主系统(3)PREREQS:MEEM3750或MEEM3750或MEEM4700或MEEM4775或MEEM47775•MEEM 4775•ME/MEEM 4775分析和设计分析和设计分析系统(4)PREPERE SYSTER(4)PERESE SYSTER(4)PREEMS(4)PERERES(4)PERERES(4)PEREREQS(4)PREPERS(4)编写。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
这项工作引入了全息量子计算,这是一种利用全息原理和 AdS/CFT 对应来解决量子信息处理中的关键挑战(例如可扩展性和纠错)的新范式。通过在高维空间的边界上全息编码量子信息,我们提出了一个框架,与传统的基于量子比特的方法相比,该框架在可扩展性和错误恢复方面有显著的改进。我们用于全息量子计算的综合理论模型包括构建全息量子纠错码,该码具有内在的纠错特性和较低的容错开销。我们提出了利用信息几何编码的新算法,例如弯曲空间上的量子行走和双曲图中的路径查找,展示了潜在的加速和资源效率。此外,我们还探索了在全息框架内实现标准量子算法,例如量子傅里叶变换 (QFT)。本文还详细介绍了使用模拟量子模拟器、超导量子比特阵列和混合经典量子系统的物理实现策略,重点介绍了实现全息量子计算机的实用途径。我们的结果表明,全息量子计算不仅增强了量子计算的能力,而且还深入了解了量子信息、时空和引力之间的基本联系。这种跨学科方法开辟了量子计算和基础物理学的新领域,为后量子密码学、量子模拟和加速科学发现提供了潜在的突破。
摘要。扩散模型在高质量产生中表现出色,但由于迭代采样而导致缓慢的推断。尽管最近的方法已成功地将扩散模型转换为单步生成器,但它们忽略了模型尺寸的减小,从而将其适用性限制在计算受约束的情况下。本文旨在通过探索推理步骤和模型大小的关节压缩来开发基于强大的整流流框架的小型,有效的一步扩散模型。使用两种操作,回流和蒸馏,整流的流框架训练一步生成模型。与原始框架相比,挤压型号的大小带来了两个新的挑战:(1)在回流过程中,大型老师和小学生之间的初始化不匹配; (2)小型学生模型上天真蒸馏的表现不佳。为了克服这些问题,我们提出了退火回退和流引导的蒸馏,这共同构成了我们的Slimflow框架。使用新颖的框架,我们训练一个一步扩散模型,其FID为5.02和1570万参数,在CIFAR10上表现优于先前最新的一步扩散模型(FID = 6.47,1940万参数)。在Imagenet 64×64和FFHQ 64×64上,我们的方法产生了与较大模型相当的小型单步扩散模型,从而展示了我们方法在创建紧凑,有效的一步扩散模型时的效率。
我们要承认并感谢科学专家和研究人员在准备此恢复策略期间提供信息,联系和反馈:劳拉·麦克杜菲(Laura McDuffie)(USGS阿拉斯加数据中心),克里斯蒂安·弗里斯(Christian Friis)(加拿大野生动物服务局),约翰·布雷特(John Brett布鲁斯·贝内特(Bruce Bennett)(育空保护数据中心),史蒂文·范·威尔根堡(Steven Van Wilgenburg)(加拿大野生动物服务局),金·莫欣尼(Kim Mawhinney)(加拿大野生动物服务局),朱莉·帕奎特(Julie Paquet)(加拿大野生动物服务局)和Mhairi McFarlane(加拿大自然保护协会)。感谢Josh Vandermeulen和Jeremy Bensette允许使用他们的照片。此外,我们要感谢我们的合作社Nehal Lal的协助收集背景信息。
在后灯组件上(例如泥浆或雪以及大雨)上过多地积累了材料,可能会导致Blis®或交叉交通警报(CTA)系统功能降解。如果检测到阻塞状态,则侧面障碍物检测控制模块左手(SODL)和右手(SODR)感觉性能降解,并输入其他缺失的目标。进入阻塞状态后,SODL和/或SODR将通过中速控制器区域网络(MS-CAN)发送状态消息到网关模块(GWM)。GWM然后将状态消息发送到高速控制器区域网络3(HS-CAN3)上的仪器面板群集(IPC)。消息中心显示盲点没有可用的传感器阻塞或交叉流量,没有可用的传感器被阻塞,左手和右侧镜面blis® /cta LED亮了。
随着大型语言模型越来越嵌入到不同的面向用户的服务中,因此能够区分人类编写和机器生成的文本以验证新闻文章的真实性,产品评论等。因此,在本文中,我们着手探索是否可以使用一种语言模型来以零声明的方式识别由另一种语言模型所作的机器生成的文本,即使两者具有不同的体系结构并接受了不同的数据培训。我们发现,总体而言,较小的模型是更好的通用机器生成的文本探测器:它们可以更精确地检测出从较小和大型模型生成的文本,而无需任何其他培训/数据。有趣的是,我们发现在相同数据上对检测器和发电机模型进行培训,对检测成功并不重要。ec.forgess Opt-125m模型的AUC为0.90,在DECTIND GPT4代中为0.90,而GPT家族GPTJ-6B的较大模型的AUC为0.65。