RHIC STAR 光束能量扫描计划的重要目标之一是了解相对论重离子碰撞中产生的强相互作用物质的 QCD 相图。集体流现象是表征产生的 QCD 物质性质的灵敏探针 [1]。将测得的流动可观测量与模型计算进行比较,以约束状态方程 (EoS) 并理解 QCD 现象。发射粒子在动量空间中的傅里叶展开的一阶和二阶谐波分别被描述为定向流 (v 1 ) 和椭圆流 (v 2 ) [2]。v 1 和 v 2 的快度奇分量是研究碰撞早期集体动力学的灵敏探针。输运和流体动力学模型计算表明,重子与光束能量相关的负 v 1 斜率是一级相变的标志 [3, 4, 5]。预计高 p T 带电强子的 v 1 测量将对火球的初始纵向分布提供有价值的约束,并提供有关部分子路径长度相关的能量损失的想法。
研究核物质到夸克胶子等离子体(QGP)的相变是相对论能量下重离子碰撞的主要目的[1–3]。根据格点 QCD 计算,相变是在有限温度和较小重子化学势下的一个平滑转变[4–6]。在较大的化学势下,它转变为一级相变,一级相边界的端点称为临界点[7–10]。为理解 QCD 的相结构,了解临界点和相边界在 QCD 相图中的位置非常重要。然而,从强子物质到夸克物质的转变密度的确切值在核物理和天体物理中仍然是一个长期争论的问题[11–17]。相对论能级重离子碰撞是目前研究QCD相变的唯一实用方法。实验测量和输运模型计算均表明,在交替梯度同步加速器(AGS)能量下,重离子碰撞可以形成密度大于3ρ0、温度高于50MeV的高温致密物质[18–20]。在这一能量领域,人们进行了大量的理论计算和实验测量,致力于寻找相变的迹象[21–33]。遗憾的是,到目前为止,临界点和相变边界仍未有定论。
摘要该研究评估了Altman的Z分数模型是否能够预测尼日利亚西部的业务失败。该研究的人口由所有在公司事务委员会注册并一次与股票交易所注册的制造公司组成。二十家公司被选为研究:10家仍然存在的公司,而10家不再存在或至少从公司事务委员会中脱颖而出的公司。研究的数据是从所选公司的财务报告中获得的。这项研究研究表明,Altman的分数财务困扰预测模型适用于10个失败的公司中的7个,这些公司经过分析,这表明该模型成功预测了70%。对10家分析的非输运公司;其中9个证明,Altman的财务困扰预测模型成功地表明该模型有90%的验证,而10%的非失败公司在灰色区域内,在其他方面注册了立即关注,以使他们恢复右脚。为此,Altman的Z分数可以用作衡量尼日利亚公司表现的“气压计”,而比率分析则用作其“气压液体”。关键字:Altman的Z评分模型,财务困扰,制造组织提交日期:08-01-2025接受日期:18-01-2025
扭转二维范德华磁体可以形成和控制不同的自旋纹理,如 skyrmion 或磁畴。除了旋转角度之外,还可以通过增加形成扭转范德华异质结构的磁层数量来设计不同的自旋反转过程。在这里,A 型反铁磁体 CrSBr 的原始单层和双层被视为构建块。通过将这些单元旋转 90 度,可以制造对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运特性显示出磁滞的出现,这在很大程度上取决于施加磁场的大小和方向,不仅由扭转角度决定,还由形成堆栈的层数决定。这种高可调性允许在零场下切换易失性和非易失性磁存储器,并根据需要控制在负场或正场值下突然磁反转过程的出现。根据微磁模拟的支持,基于层中发生的不同自旋切换过程合理化了现象学。结果强调了扭转角和层数的组合是设计扭转磁体中自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理很有意义。
在耦合微观聚结模型的输运模型中,研究了√sNN=2.4GeV时20-30%Au+Au碰撞中心性中质子和氘的有向和椭圆流及其标度特性.结果表明,用同位旋和动量相关的核平均场模拟的不可压缩率K0=230MeV的流动及其标度特性与HADES数据有很好的拟合度,而常用的动量无关的核平均场模拟的流动及其标度特性只能部分拟合HADES数据.此外,通过检查√sNN=2时0-10%Au+Au碰撞中心性中质子和氘的快度分布,发现用同位旋和动量相关的核平均场模拟的流动及其标度特性与HADES数据有很好的拟合度. 4 GeV,我们发现,用动量无关的核平均场模拟的氘核快度分布被低估了,而质子的快度分布被高估了。相反,用同位旋和动量相关的核平均场模拟的质子和氘核快度分布与 HADES 数据高度一致。我们的发现意味着,核平均场的动量依赖性是理解核物质性质和成功解释 HADES 数据的一个不可避免的特征。
在耦合微观聚结模型的输运模型中,研究了√ s NN = 2 . 4 GeV时20-30% Au+Au碰撞中心性中质子和氘的有向和椭圆流及其标度特性。研究发现,用同位旋和动量相关的核平均场(不可压缩率K 0 = 230 MeV)模拟的流动及其标度特性与HADES数据有很好的拟合度,而常用的动量无关的核平均场(不可压缩率K 0 = 380 MeV)模拟的流动及其标度特性只能部分拟合HADES数据。此外,通过检查√ s NN = 2时0-10% Au+Au碰撞中心性中质子和氘的快度分布,发现质子和氘的快度分布与HADES数据有很好的拟合度。 4 GeV,我们发现,使用动量独立的核平均场模拟低估了氘的快度分布,而高估了质子的快度分布。相比之下,使用同位旋和动量相关的核平均场模拟的质子和氘的快度分布与 HADES 数据高度一致。我们的发现意味着,核平均场的动量依赖性是理解核物质特性和成功解释 HADES 数据的一个不可避免的特征。
随着人们对电子产品微型化的不懈追求,纳米科学有望催生影响我们生活方方面面的新技术。这一迅速发展的领域探索着几纳米尺度系统的物理特性。一纳米,举个例子,是 10 -9 米,它是如此之小,以至于这个逗号的宽度就有 50 万纳米。只有在我们充分了解纳米系统的物理特性之后,应用开发才能全速进行。Chakraborty 的研究涉及解释纳米结构系统的物理特性。他的研究重点很广泛,包括 DNA 分子的新型电子和磁性以及半导体中的自旋输运——这是开发自旋电子器件的重要一步。 (自旋电子学是一门新兴技术领域,利用电子自旋。)他还是快速发展的石墨烯领域的领军研究员。石墨烯是 2004 年首次分离出来的单层碳原子,由于其许多独特的电子特性,随着硅的性能逐渐被推向极限,它有望取代当今的硅微电子学。查克拉博蒂在印度长大,并在那里开始了他的学术研究,在迪布鲁加尔大学获得了硕士和博士学位。他于 1978 年完成学业,次年获得了德国科隆大学著名的亚历山大·冯·洪堡基金会奖学金,后来成为该校的科学助理。
摘要 本文对氨-氧-氮-水混合物中的流光进行了自洽一维建模。开发并验证了一种包含物质输运、静电势和详细化学性质的流体模型。然后使用该模型模拟由纳秒电压脉冲驱动、在不同热化学条件下由一维层流预混氨-空气火焰产生的雪崩、流光形成和传播阶段。成功证实了 Meek 标准在预测流光起始位置方面的适用性。由于电离率不同,流光形成和传播持续时间随热化学条件的不同而存在显著差异。热化学状态还影响击穿特性,通过保持背景减小电场恒定来测试击穿特性。详细的动力学分析揭示了 O(1 D)在关键自由基(如 O、OH 和 NH 2 )生成中的重要性。此外,还报道了 NH 3 的解离电子激发对 H 和 NH 2 自由基产生的贡献。不同热化学状态下各种非弹性碰撞过程的电子能量损失分数的空间和时间演变揭示了燃料解离所消耗的输入等离子体能量以及雪崩和流光传播阶段主要过程的巨大变化。本研究报告的方法和分析对于开发用于氨点火和火焰稳定的受控纳秒脉冲非平衡等离子体源的有效策略至关重要。
核物质的状态方程,即核子结合能、温度、密度以及同位旋不对称性之间的热力学关系,长期以来一直是核物理和天体物理领域的研究热点。了解核状态方程对于研究原子核的性质、中子星的结构、重离子碰撞(HIC)动力学以及中子星并合都至关重要。重离子碰撞提供了一种在地面实验室中生成高密度和同位旋不对称核物质的独特方法,但形成的致密核物质仅存在很短的时间,人们无法在实验中直接测量核状态方程。实际应用中,通常采用将现象学势作为输入的输运模型,通过与实验室测得的可观测量进行比较来推导核状态方程。超相对论量子分子动力学 (UrQMD) 模型已广泛应用于研究从费米能量 (40 MeV/核子) 到 CERN 大型强子对撞机能量 (TeV) 的 HIC。随着 UrQMD 模型的核平均场势项、碰撞项和团簇识别项的进一步改进,FOPI 合作组最近测量的轻带电粒子集体流和核停止数据可以重现。在本文中,我们重点介绍了我们最近使用 UrQMD 模型研究核 EOS 和核对称能的成果。讨论了从传输模型和 HIC 实验中提取核 EOS 的新机遇和挑战。
• 物理学:太阳能电池;自旋电子器件;电介质超表面、集成量子器件、液晶微流体、多功能材料和器件、量子计算;中微子物理学、导波光子学和光纤、太赫兹超表面、太赫兹磁输运、有源超材料 • 土木工程:岩土工程 - 可持续/再生/二次路面材料;交通工程 - 交通规划 - 行人和出行行为建模、交通安全分析、城市交通、共享交通、移动即服务 (MaaS);环境工程 - 废水处理、空气污染、固体废物管理、生物精炼厂;水资源工程 - 地表和包气带水文学、水文建模;结构工程 - 土工聚合物混凝土、历史遗迹结构工程、带传感器的土木结构健康监测、先进结构胶凝复合材料、抗震土木结构、地震风险评估、工程地震学、地面运动建模、震源影响、路径和场地对地面运动的影响、工程竹子、基础设施腐蚀监测、可持续材料、工程纳米胶凝复合材料、超高性能混凝土复合材料、结构损伤与加固系统 • 电气与电子工程/电子与计算机工程:VLSI 设计、可再生能源系统与智能电网、电力电子与电力驱动、无传感器电力驱动、电动汽车充电基础设施、网络安全、信息物理系统、直流和交流微电网