摘要:二维(2D)磁体作为2D材料家族的重要成员,已成为自旋电子器件的一个有前途的平台。在此,我们报道了在惰性云母基底上化学气相沉积(CVD)生长高度结晶的亚毫米级自插金属2D铁磁(FM)三角碲化铬(Cr 5 Te 8)薄片。通过磁光和磁输运测量,我们揭示了这些2D薄片的特殊磁性能。三角Cr 5 Te 8薄片表现出强的各向异性FM序,居里温度高于220K。值得注意的是,在居里温度附近超薄Cr 5 Te 8薄片的MOKE信号中观察到一种新兴的反铁磁(AFM)状态。AFM状态具有相对较弱的层间交换耦合,允许通过调节温度在层间AFM和FM状态之间切换。同时,三角 Cr 5 Te 8 薄片表现出巨大的反常霍尔效应 (AHE),其反常霍尔电导率为 710 Ω − 1 cm − 1,零磁场下的反常霍尔角为 3.5%,超过了典型的流动铁磁体。进一步分析表明,三角 Cr 5 Te 8 中的 AHE 主要由斜散射机制驱动,而不是本征或外在的侧跳机制。这些发现证明了 CVD 生长的超薄 Cr 5 Te 8 薄片作为一种有前途的二维磁性材料的潜力,它具有出色的 AHE 特性,可用于未来的自旋电子应用。关键词:二维磁体、化学气相沉积、共存铁磁−反铁磁态、巨反常霍尔效应、碲化铬
现住址及永久地址: 沙阿贾拉勒科技大学物理系 孟加拉国西尔赫特 3114 电子邮件: s.chowdhury-phy@sust.edu schowdhuryphy@yahoo.com 传真: 880 821 715257,电话: 880 821 714479 / 713850(PABX) 手机: 880 1711 392244 网址: http://www.sust.edu https://www.sust.edu/d/phy/faculty-profile-detail/157 http://schowdhury-phy.weebly.com(目前无法使用)(http://www.geocities.com/schowdhuryphy 不再可用) 研究兴趣: 纳米电子学、半导体纳米结构中的磁输运、纳米结构物理学。 博士学位领域。研究:二维侧面超晶格中电子输运的实验研究和理论理解。博士论文题目:“二维侧面超晶格中的电子输运”。 在期刊上发表的论文列表(按时间顺序): (1) 一篇评论论文发表在孟加拉国 Jahangirnagar 大学出版的期刊“Jahangirnagar Physics Studies”上。 Jahangirnagar Physics Studies 8 (1998) 43-67 “重离子物理的现象学光学模型” SH Choudhury、MY Ali、MH Ahsan 和 MA Zaman* 孟加拉国锡尔赫特 Shahjalal 科技大学物理系。 * 孟加拉国达卡萨瓦尔 Jahangirnagar 大学物理系。 (2)在《物理评论B》上发表论文,作为快速通讯《物理评论B》62(2000)R4821-4824“二维侧面超晶格中对称性破缺的重要性”S. Chowdhury,CJ Emeleus,B. Milton,E. Skuras,AR Long 格拉斯哥大学物理与天文系,格拉斯哥G12 8QQ,英国JH Davies,G. Pennelli 和 CR Stanley 格拉斯哥大学电子与电气工程系,格拉斯哥G12 8QQ,英国
Si 24 是一种新型开放框架硅同素异形体,在环境条件下处于亚稳态。与间接带隙半导体金刚石立方硅不同,Si 24 具有接近 1.4 eV 的准直接带隙,为光电和太阳能转换设备带来了新机遇。先前的研究表明,Na 可以从高压 Na 4 Si 24 前体的微米级颗粒中扩散,在环境条件下生成 Si 24 粉末。值得注意的是,我们在此证明 Na 在大型 (~100 µm) Na 4 Si 24 单晶中保持高度移动性。在真空条件下轻轻加热 (10 -4 mbar,125 °C),Na 很容易从 Na 4 Si 24 晶体中扩散出来,并可进一步与碘反应生成大型 Si 24 晶体,经波长色散 X 射线光谱测量,该晶体的硅含量为 99.9985 at%。 Si 24 晶体在 1.51(1) eV 处显示出尖锐的直接光学吸收边,带边附近的吸收系数明显大于金刚石立方硅。温度依赖性的电输运测量证实了从金属 Na 4 Si 24 中除去 Na 可得到 Si 24 的单晶半导体样品。这些光学和电学测量提供了对关键参数的深入了解,例如来自残留 Na 的电子供体杂质水平、减少的电子质量和电子弛豫时间。在块体长度尺度上有效除去 Na 和单晶 Si 24 的高吸收系数表明这种材料有望以块体和薄膜形式使用,并有望应用于光电技术。
在过去 30 年中,探索强相互作用理论或量子色动力学 (QCD) 的相结构一直是相对论核物理的主要目标之一 [1]。尤其是 AGS(EOS 合作 [2])、CERN 的 SPS(NA49 [3] 和 Shine 合作 [4])以及后来的 RHIC-BES 计划(STAR 合作 [5])都试图寻找解除禁闭开始的明确信号。在实验方面,未来几年,我们将利用达姆施塔特和杜布纳的新设施,即 FAIR 项目 [6] 和 NICA 项目 [7] 继续进行这项搜索。在理论方面,由于缺乏对与 QCD 相变碰撞的定量预测和高质量的数值模拟 [8],对解除禁闭开始的搜索受到困扰。虽然这听起来可能令人惊讶,但不幸的是,在 FAIR/NICA 体制下,大多数重离子碰撞输运模拟都不允许包含相变,因此最多只能提供背景动力学 [9](一个值得注意的例外是 [10])。相反,相对论流体动力学模拟可以通过在有限重化学势下加入相变来提供新的见解,因为这种能量是必需的。流体动力学模型在核碰撞模拟中的应用历史悠久 [11– 15]。这种方法的优势在于,除了局部热平衡的基本模型假设外,基本上只有具体状态方程的选择作为物理输入。在低能级,描述弹丸和靶核相互作用的单一流体的流体动力学图像早已被用来研究定向流等集体效应以及这些效应对核状态方程的依赖性(参见,例如 [13, 14, 16])。然而,在低能重离子碰撞的纯流体动力学描述中,很少分析次级粒子的光谱,一个显著的例外是 [17] 的双流体模型方法。另一方面,在高碰撞能量下,流体动力学模型被发现适用于
大型强子对撞机时代迷人的粲夸克、美丽的底夸克和夸克胶子等离子体 Santosh K. Das 和 Raghunath Sahoo* 宇宙通过大爆炸诞生后几微秒,原始物质被认为是物质基本成分——夸克和胶子的混合物。预计这将在实验室中通过超相对论速度下的重核碰撞产生。在美国纽约布鲁克海文国家实验室的相对论重离子对撞机和瑞士日内瓦欧洲核子研究中心的大型强子对撞机的能量和光度边界上,可以产生一种由夸克和胶子组成的等离子体,称为夸克胶子等离子体 (QGP)。重夸克,即粲夸克和底夸克,被视为表征 QGP 的新探针,因此可以表征产生的量子色动力学物质。重夸克传输系数在理解 QGP 的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克输运系数,这是现象学研究的关键因素,有助于解开不同的能量损失机制。我们对 QGP 中的重夸克拖拽和扩散系数进行了总体介绍,并讨论了它们作为探测器解开不同强子化机制以及探测非中心重离子碰撞产生的初始电磁场的潜力。从新技术发展的角度来看,未来测量的实验前景被特别强调为下一代探测器的重味。关键词:大爆炸、重离子碰撞、重味、夸克胶子等离子体。20 世纪下半叶,Murray Gell-Mann 和 George Zweig 发现了强子的夸克模型,Glashow、Salam 和 Weinberg(以及许多其他人)通过基本力的统一发现了粒子物理的标准模型,这在粒子物理学中取得了巨大的成功。基础科学在寻找物质基本成分的同时,也为粒子探测和加速器技术的发展做出了巨大贡献,产生了巨大的直接和间接的社会效益。就目前对物质成分的理解而言,我们有六夸克、六轻子、它们的反粒子和力载体。然而,在这其中,我们只遇到轻夸克(LQ)——上夸克和下夸克,以及正常核物质中的电子。其他重粒子是在宇宙射线和粒子加速器的高能相互作用中产生的。虽然这些基本粒子如夸克和轻子自由存在,但它们的性质并不相同。
当核子被奇异数S = -1的超子(如Λ、Σ)取代时,原子核就转变为超核,从而可以研究超子-核子(Y-N)相互作用。众所周知,二体Y-N和三体Y-N-N相互作用,特别是在高重子密度下,对于理解致密恒星的内部结构至关重要[1,2]。杰斐逊实验室[3]对Λ-p弹性散射和J-PARC[4,5]对Σ−-p弹性散射进行了精确测量,最近获得了新结果,这可能有助于限制中子星内部高密度物质的状态方程。直到最近,几乎所有的超核测量都是利用轻粒子(如e、π+、K−)诱导的反应进行的[6–8],其中从超核的光谱性质来分析饱和密度附近Y-N相互作用。利用重离子碰撞中的超核产生来研究Y-N相互作用和QCD物质的性质是过去几十年来人们感兴趣的主题[9–13]。然而,由于统计数据有限,测量主要集中在轻超核的寿命、结合能和产生产额[12,14,15]。热模型[16]和带有聚结后燃烧器的强子输运模型[17,18]计算预测在高能核碰撞中,特别是在高重子密度下,会大量产生轻超核。各向异性流动通常用于研究高能核碰撞中产生的物质的性质。由于其对早期碰撞动力学的真正敏感性 [19–22],动量空间方位分布的傅里叶展开的一阶系数 v 1 ,也称为定向流,已对从 π 介子到轻核的许多粒子进行了分析 [23– 28]。集体流是由此类碰撞中产生的压力梯度驱动的。因此,测量超核集体性使我们能够研究高重子密度下 QCD 状态方程中的 Y - N 相互作用。在本文中,我们报告了在质心能量 √ s NN = 3 GeV Au+Au 碰撞中首次观测到 3 Λ H 和 4 Λ H 的定向流 v 1。数据由 2018 年在 RHIC 上使用固定靶 (FXT) 装置的 STAR 实验收集。能量为 3.85 GeV/u 的金束轰击厚度为 1% 相互作用长度的金靶,该靶位于 STAR 的时间投影室 (TPC) 入口处 [29]。TPC 是 STAR 的主要跟踪探测器,长 4.2 m,直径 4 m,位于沿束流方向的 0.5 T 螺线管磁场内。沿束流方向每个事件的碰撞顶点位置 V z 要求在目标位置的 ± 2 cm 范围内。
我在马德里康普顿斯大学的固态化学小组获得了化学博士学位,指导教授是 Emilio Morán 教授和 Rainer Schmidt 博士。我的论文“无机材料的微波辅助合成与表征”于 2014 年通过了欧洲博士学位答辩,并获得了“优异”和“特别提名” (Premio Extraordinario de Doctorado)。我在 CRISMAT Ensicaen(法国国家科学研究院)进行了博士前研究(4 个月),在那里我致力于开发使用微波辐射合成热电材料的新型方法。获得博士学位后,我加入了雷丁大学固态小组(Anthony Powell 教授的小组)(32 个月),担任博士后研究助理。我的科学活动属于能源材料(热电)的合成、结构和物理表征领域。这项工作是与工业伙伴密切合作完成的。我还提供了支持和技术咨询,帮助 Johnson Matthey PLC 在 Sonning Common(英国)开发自己的内部能力。从 2017 年 2 月到 2018 年 3 月,我一直是“Juan de la Cierva-formación”研究员(西班牙 MINECO 项目),在马德里材料科学研究所 (ICMM) - CSIC 工作,我是 2D 铸造研究小组(Mar García 教授的小组)的成员,致力于研究凝聚态物质的物理特性。 2018 年 4 月,我开始担任“Atracción de Talento –M2- Comunidad de Madrid”研究员,在马德里康普顿斯大学固态化学小组研究能源材料(热电、固体氧化物燃料电池、电池)的合成和表征,并获得了 ICMM-CSIC 的居里夫人奖学金 (MSCA-IF),从事 2D 材料的制备和表征。2019 年 9 月,我开始担任马德里康普顿斯大学无机化学系助理教授 (PAD) 的新职位,自 2023 年 1 月起,我担任副教授 (PCD)。2021 年,我获得了西班牙 I3 认证。我的研究主要集中在通过替代方法合成能源材料(电池、热电、SOFC 的组件)、通过中子粉末衍射和同步加速器 X 射线衍射研究这些材料的结构以及非分子材料的电、热和磁输运特性。我是 48 篇文章(32 篇 Q1 和 14 篇 D1;其中包括:Adv Funct Mater、Chem Mater、J Mater Chem A、Inorg Chem、J Eur Ceram Soc、Nanoscale)和 5 个书籍章节的合著者,h 指数为 21(1555 次引用,Google Scholar)。我是《固体化学杂志》、《晶体与纳米材料》3 期特刊的客座编辑。我是 RSC、ACS、Wiley、Springer- Nature、Elsevier、MDPI 期刊的审稿人,我评估过阿根廷研究机构的项目,并担任过 4 次博士论文答辩的评委。我在 22 个国家和 28 个国际会议上展示了我的研究成果(共 90 篇论文),并 10 次在会议和研讨会上担任受邀演讲嘉宾(其中包括:2022 年聚合物和先进材料国际会议、2022 年为期 3 天的材料科学国际会议、2021 年欧洲先进材料大会)。我参与了 15 个不同的研究项目,包括 3 个欧洲项目(其中 1 个作为 PI,CHEM2D - DLV-794126,158K 欧元)和 12 个国家/地区项目(3 个作为 PI:马德里社区项目,PR65/19-22459,54K 欧元;科学和创新部,TED2021-129569A-I00,230K 欧元;科学和创新部