摘要:雄激素性脱发是一种多因素疾病,以明显的脱发为特征,影响男性和女性,是一种使人衰弱的慢性疾病,严重影响生活质量。现有的基于米诺地尔或非那雄胺的局部治疗需要重复使用,并伴有一定数量的不良反应。当前治疗面临的挑战为研究新的治疗策略铺平了道路,这些策略更精确、更有选择性,能够提供长期效果。在此背景下,本综述研究了新提出的 5-α-还原酶抑制剂的配方策略,以实现靶向药物输送,从而改善毛囊作用部位的药物保留,同时减少药物的全身吸收,这是造成重要不良反应的原因。具体来说,研究将集中在影响纳米结构药物输送系统在毛囊中形成储库的性能的几个方面,例如粒度、表面电荷、赋形剂以及与外部刺激的联合应用(红外辐射、机械按摩、超声波应用)。
抽象使用金属添加剂制造(AM)的一种经常引用的好处是设计和产生适合最终用途零件所需功能和性能的复杂几何形状。在这种情况下,激光粉床融合(LPBF)是合适的AM过程。由于可访问性问题和降低成本潜力,这种“复杂” LPBF零件应使用净形制造,而最少使用后处理加工。但是,LPBF的固有表面粗糙度可能会阻碍零件的性能,尤其是从结构的角度,尤其是在疲劳方面。因此,工程师必须了解表面粗糙度对零件性能的影响以及如何在设计过程中考虑它。本文介绍了与LPBF表面粗糙度有关的研究的系统文献综述。通常,研究重点是表面粗糙度与LPBF构建参数,材料特性或后处理之间的关系。关于如何考虑AM设计过程中如何考虑表面粗糙度的设计支持的研究很少。因此,考虑到其他研究领域突出了表面粗糙度的影响,对这种支持的未来研究很重要。关键字:激光粉床融合,表面粗糙度,添加剂制造设计(DFAM),X(DFX)设计,设计工程联系:Obilanade,DidunoluwaabiodunLuleå技术产品创新瑞典
摘要:对纳米载体治疗效果和副作用的担忧导致了将其推进为靶向和响应性递送系统的策略的发展。由于其生物活性和生物相容性,肽在这些策略中起着关键作用,因此在纳米医学中得到了广泛的研究。特别是基于肽的纳米载体,随着纯肽结构以及天然和改性肽与聚合物、脂质和无机纳米颗粒的组合的进步而蓬勃发展。在这篇综述中,我们总结了肽促进基因递送系统的进展。核酸疗法的功效在很大程度上取决于细胞内化和向亚细胞器的递送。因此,这篇综述重点介绍了纳米载体,其中肽在将核酸运送到其作用位点方面起着关键作用,特别强调了帮助阴离子、水溶性核酸跨越它们在有效发挥作用的途中遇到的膜屏障的肽。在第二部分中,我们讨论了肽如何推进纳米组装递送工具,使得它们能够穿越递送障碍并以受控的方式在特定位置释放其核酸货物。
基于脂质体的药物输送系统已成为一种革命性的低毒性、可生物降解和生物相容性的纳米药物,可克服传统癌症治疗方法产生的不良副作用。脂质体是封闭的球形双层磷脂囊泡,其特征在于脂质区域包含疏水性药物和内部水腔以包封亲水性药物。与传统药物相比,脂质体具有许多优点,包括提高功效、治疗指数、稳定性和药代动力学作用;药物靶向肿瘤组织,降低全身毒性,延长在血液循环中的停留时间,改进即靶向、控制和持续向肿瘤输送药物,这些使得基于脂质体的药物输送成为蓬勃发展的研究领域。本综述简要总结了基于脂质体的药物输送针对不同癌症化疗药物(例如乳腺癌、肺癌、肝细胞癌、宫颈癌、胰腺癌、胃癌、皮肤癌、脑癌、头颈癌)的广泛研究。
药质体是一种基于脂质运输系统的先进药物输送方法。一种称为“药物靶向”的新型药物输送方法旨在将药物输送到预期的作用或吸收部位,同时防止任何其他非目标部位接触药物。药物靶向是一种实用的输送方法,可将药剂输送到特定位置而不会危及其他器官。药质体是胶体药物分散体,以六边形组装成胶束、囊泡或纳米大小的胶束,并与磷脂共价连接。由于其独特的特性,包括体积小、两亲性、活性药物负载、高包封率和稳定性,它们可以非常准确地作为药物给药的合适载体。
我们对临床证据进行了系统的文献检索,以检索系统评价,并从最近的 2 篇评价中选择并报告了与我们的研究问题相关的结果。我们对所选的系统评价进行了文献检索,以确定 2020 年 12 月之后发表的主要研究。我们使用系统评价偏倚风险 (ROBIS) 工具评估每篇纳入系统评价的偏倚风险。我们根据建议分级、评估、制定和评估 (GRADE) 工作组的标准评估了证据的质量。我们进行了系统的经济文献检索,并从公共支付者的角度对 IDDS 与标准治疗(即非 IDDS 疼痛管理方法)进行了成本效益分析。我们还分析了安大略省公共资助 IDDS 对预算的影响。为了了解 IDDS 的潜在价值,我们采访了癌痛患者及其护理人员。我们通过回顾关于使用 IDDS 治疗成人和儿童癌症疼痛的已发表文献以及回顾此项卫生技术评估的其他组成部分来探讨伦理考虑因素,以确定与安大略省情况相关的伦理考虑因素。
摘要:尽管目前正在开发各种治疗方法,但肺癌的死亡率仍然很高。此外,尽管临床上正在使用各种肺癌诊断和治疗策略,但在许多情况下,肺癌对治疗没有反应,并且存活率降低。癌症纳米技术,也称为癌症纳米技术,是一个相对较新的研究课题,汇集了化学、生物、工程和医学等各个领域的科学家。使用脂质基纳米载体辅助药物分布已经在多个科学领域产生了重大影响。已证明脂质基纳米载体有助于稳定治疗化合物,克服细胞和组织吸收障碍,并改善体内药物向特定目标区域的输送。因此,脂质基纳米载体正在被积极研究并用于肺癌治疗和疫苗开发。本综述讨论了使用脂质基纳米载体实现的药物输送改进、体内应用中仍然存在的障碍以及脂质基纳米载体在肺癌治疗和管理中的当前临床和实验应用。关键词:肺癌 脂质纳米载体 脂质体 药物递送系统
根据CGM葡萄糖数据每5分钟收到每8-12分钟,每8-12分钟学习每8-12分钟学习一次。从以前的胰岛素输送和餐食信息中学习,以适应饭后,日常以及每日胰岛素的需求。
蛋白质是氨基酸链,每个氨基酸链通过特定类型的共价键与其相邻氨基酸连接。肽键聚合 L-α 氨基酸形成了蛋白质的基本结构。蛋白质是指由约 50 种氨基酸组成的样本。肽是指由不到 50 种氨基酸组成的颗粒 (Bhargav, 2017)。蛋白质和肽是一种非常有潜力的治疗药物,目前蛋白质药物市场预计每年超过 400 亿美元,处方行业占 10%。这些蛋白质和肽有一些局限性,例如生物利用度较低和代谢责任。肽主要针对广泛的分子,并在肿瘤学、免疫学、传染病和内分泌学等领域提供了无限的可能性 (Bruno、Miller 和 Lim, 2013)。蛋白质和肽是水解后含有两个或多个氨基酸的生物聚合物。它们的原理是细胞的原生质,分子量更大
与较大尺寸的形式相比,纳米材料具有出色的光学、电学和/或机械特性。它们在颜色、导电性、反应性、表面积与体积的比值和表面张力方面可能与宏观形式不同。正因为如此,纳米材料因其在疫苗生产、药物和药物输送方面的潜在应用而引起了科学家的兴趣 [3]。纳米载体是一种胶体药物输送装置,通常具有 500 纳米大小的亚微米颗粒。在过去的几十年里,人们对纳米载体进行了大量研究,因为它们在药物输送方面显示出巨大的前景。 [4] 由于纳米载体具有高表面积与体积的比值,它们可以改变药物的基本特性和生物活性。纳米载体可以融入药物输送系统的一些特性包括增强药代动力学和生物分布、降低毒性、提高溶解度和稳定性、控制释放和治疗剂的位点特异性输送 [5,6]。纳米技术最近已成为突破传统药物递送技术局限性的有用工具。为了改善药代动力学和生物分布特征、降低毒性、控制释放、增强溶解度和稳定性以及在特定位置递送有效载荷,纳米载体可以改变其封装部分的根本特性和生物活性 [7,8]。通过改变其组成、形状、大小和表面质量,纳米载体还可以表现出各种各样的物理化学性质 [9,10]。有机和无机系统均可用作纳米载体。无机纳米载体包括介孔二氧化硅纳米粒子 (MSN) 和金属纳米粒子,而有机纳米载体包括脂质体、脂质纳米粒子、聚合物纳米粒子、树枝状聚合物、胶束和病毒样颗粒 (VLP) [11]。