关键词:高电子迁移率晶体管 (HEMT)、磷化铟 (InP)、高频、制造摘要自 DARPA 太赫兹电子项目结束以来,诺斯罗普·格鲁曼公司 (NG) 一直致力于将工艺过渡到 100 毫米,并使先进的 InP HEMT 技术适用于高可靠性 A 类空间应用。NG 的 100 nm InP HEMT 节点目前处于制造就绪水平 (MRL) 9,而砷化铟复合通道 (IACC) 节点处于 MRL 3/4。为了提高 IACC 的 MRL,NG 一直致力于将工艺从材料生长转移到晶圆加工到 100 毫米生产线,并利用 100 nm InP HEMT 工艺的制造和认证专业知识。在整个工艺转移和成熟过程中,NG 克服了工艺重现性、产量和吞吐量方面的挑战,并进行了广泛的可靠性测试。引言在过去二十年中,在美国国防高级研究计划局、美国宇航局/喷气推进实验室和三军的资助下,诺斯罗普·格鲁曼公司 (NG) 通过积极缩小 InP HEMT 尺寸并使用超高迁移率砷化铟复合通道 (IACC) HEMT 结构,展示了高达太赫兹的高电子迁移率晶体管 (HEMT) [1,2] 和单片微波集成电路 (MMIC) [3-6],如表 1 所示。InP 和 IACC HEMT 的关键制造步骤是分子束外延 (MBE)、电子束光刻 (EBL) 栅极、基板通孔 (TSV) 以及缩放互连和钝化工艺。材料生长和制造工艺最初是在 NG 的 75 毫米生产线上开发的。NG 致力于技术成熟工作,以缩小制造差距,以提高 IACC 节点的 MRL [7]。工艺概述 InP 和 IACC HEMT 晶圆采用分子束外延法在半绝缘 InP 衬底上生长。IACC 外延剖面具有复合通道,该通道由夹在两个晶格匹配的 In x Ga 1-x As 层之间的 InAs 层组成 [2]。高电子迁移率 InAs 通道是高频低直流功率操作的关键推动因素。肖特基势垒层和重掺杂帽经过优化,可实现低
我的研究1。建筑师(时髦移民朋克),运输爱好者和公共交通/TOD老师(#StockHolmschooloFtransit)2。城市形式对旅行的影响3。迁移1和运输形态发生(技术胚胎,社会技术系统,迁移率培养和形态发生过程)4。Urban(RE)可持续移动性/碳中立性/能源效率的设计
中风会显着失去迁移率和肌肉控制。 div>大脑完整界面(BCI)和功能磁共振(fMRI)促进了大脑重组的运动恢复和映射。 div>最近的研究表明,BCI训练显着改善了中风患者的运动功能和大脑连通性。 div>
摘要:信息技术的快速进步增强了人们对互补设备和电路的兴趣。常规的P型半导体通常缺乏足够的电性能,从而促使人们寻找具有高孔迁移率和长期稳定性的新材料。元素柜(TE)具有一维手性原子结构,由于其狭窄的带隙,高孔迁移率和在工业应用中的多功能性,尤其是在电子产品和可再生能源方面,因此出现了有前途的候选人。本评论重点介绍了纳米结构和相关设备的最新进展,重点是合成方法,包括蒸气沉积和水热合成,它们产生了纳米线,纳米棒和其他纳米结构。在光电探测器,气体传感器和能源收集设备中的关键应用被引起了人们的注意,并特别强调了它们在物联网(IoT)框架(IoT)框架中的作用,这是一个快速增长的领域,正在重塑我们的技术环境。也突出显示了基于TE的技术的前景和潜在应用。
推动了大面积柔性和印刷电子领域的发展。这些进步使得大量应用成为可能,例如有机发光二极管[1,2]、有机光伏电池[3,4]、有机热电电池[5,6]、有机场效应晶体管 (OFET)、[7–10] 有机(生物)传感器[11–13] 和神经形态设备。[14,15] 在这方面,有机场效应晶体管 (OFET) 不仅与其直接的技术应用有关,而且还是研究薄膜电性能的理想试验台。有机半导体通常分为两大类,即共轭聚合物和小分子。前者,即聚合物,由于其溶液可加工性而特别具有吸引力,并且已广泛报道了电荷迁移率高于氢化非晶硅标准(0.5–1 cm2V−1s−1)的 OFET。 [16] 后者是小分子,易于排列成有序的分子晶体,经过数年的化学调整和薄膜处理的精细调整,已经实现了场效应迁移率 > 10 cm 2 V − 1 s − 1 的小分子 OFET。[17–19] 这些材料的 π 共轭化学根源与其骨架上碳原子的 sp 2 杂化有关。这种特殊的特性也常见于
PTSE 2吸引了相当大的关注,这是一种高迁移率二维材料,并在微电子,光电检测和旋转三位型中进行了设想的应用。高质量PTSE在具有晶圆尺度均匀性的绝缘基板上的生长是电子运输调查和设备中实际用途的先决条件。在这里,我们报告了由分子束外延在ZnO(0001)上高度定向的几层PTSE 2的生长。膜的晶体结构具有电子和X射线衍射,原子力显微镜和透射电子显微镜。与石墨烯,蓝宝石,云母,SIO 2和PT(111)上生长的PTSE 2层的比较表明,在绝缘底物中,ZnO(0001)产生了具有优质结构质量的膜。在室温下,在室温下,在室温下,在200 cm 2 v -1 s -1超过200 cm 2 v -1 s -1的外部ZnO/PTSE 2上进行的HALL测量值显示出明确的半导体行为,低温下的较高迁移率在低温下。
以及在 V GT = V GS – V TH = 200mV 时本征电压增益(AV = gm /g D ),对于具有不同尺寸(沟道长度 L 和宽度 W)的器件,工作在 300K(RT,红色)和 4.2K(LT,蓝色)。由于 gm 主要由有效迁移率 (µ eff ) [8] 决定,因此对于长 L 器件,测得的 RT 和 LT 增加了 3-5 倍,具体取决于 W。另一方面,g D 的行为由 µ eff 和沟道长度调制的组合决定。由于 gm 和 g D 都与 µ eff 成正比,因此迁移率效应不会反映在 A V 中。随着 L 在 300K 和 4.2K 时的增加,较长 L 的短沟道效应 (SCE) 的降低会改善 g D ,从而改善 AV 。我们观察到的 AV 随 T 的微小差异可以用 SHE 来解释,这将在后面讨论。对于 L = 150nm,我们测量了 LT 和 RT 处的电压增益约为 39dB,这与 FDSOI [9] 的报告值相当。
雷根堡,2024年6月26日,社会和经济框架当前的十年的特点是移动性向电气化驱动系统转移。全球对全球变暖和空气污染的认识正在增长。这不仅在立法层面(更严格的法规),而且在更广泛的人群(对环保技术的需求)中导致了明显的方向变化。在个体迁移率领域,电气化车辆驱动器被认为是清洁,无局部发射且高效的迁移率最重要的技术先驱。电气化的挑战之一是同时以不同形式需要它,因为它旨在支持汽车制造商的几个战略目标,以遵守计划中的CO 2车队限制。因此,他们需要针对不同车辆细分市场和价格类别的具有成本效益的解决方案,以便能够尽可能满足所有客户的用例。除了电池供电的车辆外,电气化还可以启用低压和高压混合动力车,以及带有燃料电池的电动汽车作为能量转换器。和未来车辆架构的共同点是电动驱动器。专家预测
AlGaN/GaN高电子迁移率晶体管(HEMT)或金属绝缘体半导体HEMT(MIS-HEMT),凭借优越的极化诱导高迁移率二维电子气(2DEG),因其高开关速度、低寄生参数和低导通电阻而受到广泛关注,并在高频射频和功率开关应用方面都取得了公认的成功[1-4]。通常在厚钝化电介质(如SiNx)上设置栅极和/或源极场板,以减轻栅极漏极区域的高电场并获得更高的击穿电压[5-7]。它们也有助于抑制表面态引入的电流崩塌[5,8]。然而,场板结构将引入额外的寄生电容,导致更高的VDS×IDS功率损耗和更长的开关持续时间。此外,钝化层还会引入钝化电介质/(Al)GaN界面态,甚至电介质本身的体态,它们的捕获/去捕获过程会引起寄生电容的动态漂移,导致实际应用中开关转换紊乱,dV/dt控制失效[9-11]。
这项研究研究了垂直堆叠的CVD生长的RES 2 /MOS 2单极异质结构设备作为现场效应晶体管(FET)设备,其中Res 2上的RES 2充当排水管,而MOS 2在底部充当源。进行了RES 2 /MOS 2 FET设备的电气测量值,并针对不同VGS(闸门电压)(漏极电压)的ID(排水电流)(漏极电压)变化,显示了N型设备特性。此外,阈值电压是在栅极偏置电压上计算的,对应于〜12V。拟议的RES 2 /MOS 2 HeteroJunction FET设备的迁移率为60.97 cm 2 V -1 S -1。利用紫外线光学光谱和可见的紫外线光谱法提取了制造的VDW异质结构的带状结构,揭示了Res 2 /MOS 2界面处的2D电子气体(2DEG)的形成,从而探索了制造Fet的高载流子迁移率。通过跨异构结的屏障高度调节,研究了野外效应行为,并根据跨异构结的电荷传输提出了详细的解释。