计算和实验能力的提高正在迅速增加日常生成的科学数据量。在受内存和计算强度限制的应用中,过大的数据集可能会阻碍科学发现,因此数据缩减成为数据驱动方法的关键组成部分。数据集在两个方向上增长:数据点的数量和维数。降维通常旨在在低维空间中描述每个数据样本,而这里的重点是减少数据点的数量。提出了一种选择数据点的策略,使它们均匀地跨越数据的相空间。所提出的算法依赖于估计数据的概率图并使用它来构建接受概率。当仅使用数据集的一小部分来构建概率图时,使用迭代方法来准确估计稀有数据点的概率。不是对相空间进行分组来估计概率图,而是用正则化流来近似其函数形式。因此,该方法自然可以扩展到高维数据集。所提出的框架被证明是在拥有大量数据时实现数据高效机器学习的可行途径。
横截面是一种关键的样品制备技术,被广泛用于各种应用,它能够研究埋层和地下特征或缺陷。最先进的横截面方法各有优缺点,但通常都需要在吞吐量和准确性之间进行权衡。机械方法速度快但准确性低。另一方面,基于离子的方法,如聚焦离子束 (FIB),分辨率高但速度慢。激光器可以潜在地改善这种权衡,但它也面临多重挑战,包括产生热影响区 (HAZ)、过大的光斑尺寸以及材料再沉积。在这项工作中,我们首次利用飞秒脉冲激光器,这种激光器已被证明可产生极小甚至零的 HAZ,用于快速创建质量可与 FIB 横截面相媲美的大横截面。该激光器集成了靶向 CO 2 气体输送系统,用于再沉积控制和光束尾部削减,以及硬掩模,用于顶面保护和进一步缩小有效光斑尺寸。通过现实世界的例子展示了所提出的系统的性能,这些例子比较了激光和 FIB 横截面技术产生的吞吐量和质量。
风力涡轮机 (WT) 利用风能发电。因此,对风力涡轮机的控制和经济高效的运行进行了研究。控制系统具有使用寿命长、能量输出最大和安全性高等特点。在控制方法和控制策略方面,讨论了限制和优化能耗的各种方法。风力发电的整合可能会损害瞬态系统的稳定性。异步感应发电机无法处理风能应用中产生的无功功率。WT 通常设计为可承受恶劣天气,但不能承受高速度或高扭矩。强大的气动扭矩或转速能够破坏 WT 叶片。为了防止这种情况发生,WT 始终具有一个切断速度,超过此速度时,涡轮机将通过制动器停止运转。当过大的风速危及涡轮机的安全时,WT 会采用一系列控制技术。因此,所有 WT 均采用功率控制方法构造。这可以调节俯仰和失速。WT 可以应用被动或主动失速控制。因此,本研究分析了相关技术、风力涡轮机的维护、成本、多种类型的风力涡轮机控制器以及风能行业特有的负面影响和障碍。
氟化氩 (ArF) 是目前波长最短的激光器,能够可靠地扩展到高增益惯性聚变所需的能量和功率。ArF 的深紫外光和提供比其他当代惯性约束聚变 (ICF) 激光驱动器更宽带宽的能力将大大提高激光目标耦合效率,并使驱动内爆的压力大大提高。我们的辐射流体动力学模拟表明,使用亚兆焦耳 ArF 驱动器可以获得大于 100 的增益。我们的激光动力学模拟表明,电子束泵浦 ArF 激光器的固有效率可以超过 16%,而效率第二高的氟化氪准分子激光器的固有效率约为 12%。我们预计,使用固态脉冲功率和高效电子束传输到激光气体(美国海军研究实验室的 Electra 设施已进行了演示),将 ArF 光传输到目标的“电插式”效率至少应达到 10%。这些优势可以推动开发尺寸适中、成本较低的聚变发电厂模块。这将彻底改变目前对惯性聚变能源过于昂贵和发电厂规模过大的看法。本文是讨论会议主题“高增益惯性聚变能源前景(第 1 部分)”的一部分。
一、引言工作压力是各行各业关注的主要问题,它不仅影响到员工的健康,也影响到组织。据预测,到 2035 年,空中交通总量将平均增长 6.2%。这一预测表明,未来 20 年对空中交通管制员的需求将迅速增长,全球现有空中交通管制员的压力和疲劳程度也将随之上升,因为他们必须确保使用航空运输服务的人员的安全。压力会影响空中交通管制员的表现及其正确完成任务的能力。过大的压力会影响管制员集中注意力于某项任务的能力,这可能导致灾难性事件,如航空事故和意外。另一方面,疲劳只会带来小小的不便,最常见的解决方法是小睡一会儿或停止导致疲劳的活动。通常,疲劳不会造成严重后果。然而,如果该人员参与与安全相关的活动,例如驾驶飞机、分离飞机并负责安全的空中交通流量,疲劳的后果可能是灾难性的。本文的目的是找出压力和疲劳之间的相关性,并找出疲劳和压力的主要原因,并找出以前关于同一主题的研究中的差距,以突出值得关注的领域,并可能找到一些可以帮助空中交通管制员和其他群体的解决方案和建议。
一、引言工作压力是各行各业关注的主要问题,它不仅影响到员工的健康,也影响到组织。据预测,到 2035 年,空中交通总量将平均增长 6.2%。这一预测表明,未来 20 年对空中交通管制员的需求将迅速增长,全球现有空中交通管制员的压力和疲劳程度也将随之上升,因为他们必须确保使用航空运输服务的人员的安全。压力会影响空中交通管制员的表现及其正确完成任务的能力。过大的压力会影响管制员集中注意力于某项任务的能力,这可能导致灾难性事件,如航空事故和意外。另一方面,疲劳只会带来小小的不便,最常见的解决方法是小睡一会儿或停止导致疲劳的活动。通常,疲劳不会造成严重后果。然而,如果该人员参与与安全相关的活动,例如驾驶飞机、分离飞机并负责安全的空中交通流量,疲劳的后果可能是灾难性的。本文的目的是找出压力和疲劳之间的相关性,并找出疲劳和压力的主要原因,并找出以前关于同一主题的研究中的差距,以突出值得关注的领域,并可能找到一些可以帮助空中交通管制员和其他群体的解决方案和建议。
简介 1978 年第二部共和宪法引入了总统职位,赋予总统相当大的权力,这些权力主要在宪法第七章中列举。总统职位所拥有的权力是如此之大,以至于时任总统 JR Jayewardene 曾宣称,作为总统,他唯一不能做的事情就是把男人变成女人,反之亦然。1 尽管关于总统权力集中和废除总统制的必要性的讨论已经很多,但是,很少有人分析过总统权力在宪法存续期间如何通过上级法院的判例演变。本文将探讨拥有唯一和专属管辖权来审理和裁定与宪法解释有关的任何事项的机构 2 ——最高法院,是如何通过司法解释过程塑造总统权力的。在分析总统在不同类别下的权力的判例时,作者认为,尽管法院在审判过程中取得了一些小小的胜利,但法院在很大程度上避免援引宪法的基本原则,包括法治、三权分立和宪政本身,以制约“权力过大的行政机构”3。在某些情况下,这些原则的选择性应用或许为司法现实主义理论提供了依据。然而,在大多数情况下,值得注意的是,法院在驳回试图限制总统权力的各种论点时给出的法律依据已经得到了充分的证实。
MAX3483E 系列器件 (MAX3483E/MAX3485E/ MAX3486E/MAX3488E/MAX3490E/MAX3491E) 是具有 ±15kV ESD 保护、+3.3V、低功耗收发器,适用于 RS-485 和 RS-422 通信。每个器件包含一个驱动器和一个接收器。MAX3483E 和 MAX3488E 具有斜率限制驱动器,可最大程度降低 EMI 并减少由电缆端接不当引起的反射,从而允许以高达 250kbps 的数据速率进行无错误数据传输。部分斜率限制的 MAX3486E 传输速率高达 2.5Mbps。MAX3485E、MAX3490E 和 MAX3491E 的传输速率高达 12Mbps。所有器件均具有增强的静电放电 (ESD) 保护功能。所有发射器输出和接收器输入均采用 IEC 1000-4-2 气隙放电保护 ±15kV,采用 IEC 1000-4-2 接触放电保护 ±8kV,采用人体模型保护 ±15kV。驱动器具有短路电流限制,并通过热关断电路防止过大的功率耗散,该电路将驱动器输出置于高阻抗状态。接收器输入具有故障安全功能,当两个输入都开路时,可保证逻辑高输出。MAX3488E、MAX3490E 和 MAX3491E 具有全双工通信功能,而 MAX3483E、MAX3485E 和 MAX3486E 则设计用于半双工通信。
爱达荷州提顿县正在寻求一家合格的专业交通咨询公司的服务,以帮助实施联邦“全民安全街道和道路”(SS4A)拨款,用于制定一项安全行动计划,该计划整合了当地、地区和全州的交通计划。我们正在寻求专业的交通规划服务,为我们压力过大的交通网络提供创新和创造性的解决方案,以提高所有用户的安全性和效率。安全行动计划将重点关注提顿县的州公路系统,特别是 33、31 和 32 号公路与市和县道路、小路和人行道的整合。交通数据、事故数据、利益相关者知识和社区意见将为确定关键关注领域提供信息。安全行动计划将提供一个框架,用于协调当地和地区交通计划以及建议的网络升级,以提高交通安全性和效率。安全行动计划应解决与安全和解决方案相关的所有网络用户,包括驾驶员、行人、骑自行车者、公共交通机构和商用车运营商。安全行动计划还必须包括美国交通部 (DOT) 在 SS4A 拨款中列出的组成部分。SS4A 行动计划的组成部分可在 SS4A 2023 NOFO 表 1 中找到,网址为:https://www.transportation.gov/sites/dot.gov/files/2023-03/SS4A-NOFO-FY23.pdf。
新的偏远社区能源系统模型 (EnerSyM-RC) 旨在量化怀特岛能源系统中采用潮汐能、太阳能光伏、海上风电和能源储存的影响。基于可再生能源总发电量与预计年需求(相当于 136 MW 平均功率)相匹配的情景,安装 150 MW 太阳能光伏、150 MW 海上风电和 120 MW 潮汐能容量可增强供需平衡,同时还可降低最大电力盈余幅度,与表现最佳的太阳能+风能系统相比,两者均降低 25%。采用潮汐能还将总陆地/海洋空间减少 33%。采用潮汐能容量的经济可行性在很大程度上取决于储备能源的价格;当储备能源价格超过 2022 年远期交付合同平均价格(250 英镑/MWh)时,采用潮汐能容量可降低全系统能源的平准化成本(相对于太阳能+风能系统)。当潮汐能的溢价被储备能源的节省所抵消时,整个系统的能源平准化成本将达到 92 英镑/兆瓦时,这一临界点就会出现。一般来说,这些由潮汐能采用而产生的系统效益在一系列不同的需求状况下是一致的,并且在年度可再生能源总供应量相对于需求量过大的情况下也是如此。