摘要:分子灯笼(LN)复合物是用于发展下一代量子技术的有前途的候选者。高对称结构融合了整数自旋LN离子可以产生良好的晶体晶体磁场准两倍基态,即可能作为磁矩的基础的量子两级系统。最近的工作表明,在LN离子周围的协调环境的对称性降低可以在地面双线内产生避免的交叉或时钟过渡,从而导致相干性显着增强。Here, we employ single-crystal high-frequency electron paramagnetic resonance spectroscopy and high-level ab initio calculations to carry out a detailed investigation of the nine-coordinate complexes, [Ho III L 1 L 2 ], where L 1 = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane and L 2 = F - (1)或[MECN] 0(2)。由中性有机配体支架(L 1)施加的伪4倍对称性和顶端阴离子氟化物离子产生一个强轴向各向异性,其中1 m j =±8个地基态dbouptet在1中,其中m j表示j = 8 Spin-Orbital Moment to-Orbital Mistis of-Orbital Moments to to-Orbital Mistis of to-orbital Mistis ot to-orbital Mistis to to 4 kark 4 kaws k 4 kaw cc c c c c c c c c c c c 4 k. c c c c c 4 k 4次。与此同时,异位晶体场相互作用产生了该双重双线内巨大的116.4±1.0 GHz时钟过渡。然后,我们通过用中性MECN替换F-来证明时钟过渡的靶向晶体场工程(2),从而导致时钟过渡频率增加了2.2倍。实验结果与量子化学计算广泛一致。这种可调节性是高度可取的,因为由二阶对磁噪声尺度的敏感性与时钟过渡频率相反。
实用的量子网络将需要由许多内存量子位组成的量子节点。这反过来将增加控制每个量子线所需的光子电路的复杂性,并需要策略以多重记忆并克服其过渡频率的不均匀分布。在可见的近红外(VNIR)波长范围内运行的集成光子学,与领先的量子内存系统的过渡频率兼容,可以为这些需求提供解决方案。在这项工作中,我们意识到了VNIR薄膜锂Nio-bate(TFLN)集成光子平台与关键组件,以满足这些要求。这些包括低损失耦合器(<1 dB/ - facet),开关(> 20 dB灭绝)和高带宽的电光调节器(> 50 GHz)。使用这些设备,我们证明了高效率和与CW兼容的频率变化(在15 GHz时效率> 50%),以及通过嵌套调制器结构的同时激光振幅和频率控制。最后,我们突出显示了使用演示的TFLN
在这项工作的第一部分中,首次使用超冷钙原子 (12 µ K) 实现了 657 nm 的光学钙频率标准,并使用目前不确定性最低的频率梳发生器创建了过渡频率在 1 , 2 · 10 − 14 的世界中确定。以前对频率标准不确定性的重要贡献已降低。通过使用超低原子,多普勒效应的影响可以降低至1 Hz。通过改善激光系统并优化淬火冷却,达到了高达4·10 10 cm -3的集合密度。结合使用状态选择性检测方案对频移进行更灵敏的检测,可以将冲击对不确定性的影响降低到 0 . 3 · 10 − 16 。 。使用光缔合光谱对碰撞进行进一步研究,将基态散射长度的可能值限制在 50 a 0 到 300 a 0 的区间。首次对用于查询时钟转换的激光脉冲中激光相位随时间变化而产生的频移进行了定量检查和校正。
量子计算机的基本构建块是一个Qubit,一个通用的两级系统。由于目标是准确操纵许多量子位,因此必须确定量子空间是否可靠,即不与更大的空间结合在一起。最有希望的量子量的突出使它们与环境和其他状态相关,以独特而孤立的过渡频率操作每个量子,被认为只会造成小小的不连贯性干扰。对于在噪声设备上执行的任何成功的易耐故障量子计算的假设是必要的,因为误差缓解依赖于噪声的受控空间[1-3]。另一方面,外部状态的潜在贡献可能导致系统错误,这很难纠正[4-7]。在延迟测试中直接观察到了这样的泄漏[8]。5变量,但尚未确定其起源。由于非谐调性,对于非常快的门而言,泄漏到已知的较高状态[9]变得显着,在这种情况下,需要采取其他措施来减少它[10-12]。
为了精确地测试物理理论,必须在系统中进行检查,该系统足够简单,以允许精确的理论描述,并且可以高精度地测量。数十年来,氢原子一直被用作测试量子电动力学(QED)系统的系统。由于其简单性,可以使用QED精确计算氢的能级。在实验上,使用激光光谱法精确测量氢中的过渡采石场。通过将实验数据与理论表达进行比较,可以确定两个物理概念,即rydberg常数和原子核的辐射半径,并且可以测试理论本身的有效性。在这项工作中,报告了在氢样离子He +中1s-2s两光子转变的光谱法上的进展。由于他 +具有与氢相同的结构,因此基本上是由同一理论描述的。然而,QED较高的高阶贡献了更大的比例,因为它们在核心充电中具有巨大的能力。通过将1S-2S过渡频率与氦芯的众所周知的电荷半径相结合,可以在不同的系统中首次测量Rydberg常数。该值与从氢光谱获得的值的比较将对QED的普遍性进行严格的测试。这项工作的第一部分涉及离子秋天的结构。目前,氢光谱的准确性受核运动的影响限制。由于其负载,他的 +离子几乎被困在保罗陷阱中,这大大降低了这些影响。大约50个He +离子与一千个激光冷却的Be离子一起被困在一起,可用于交感冷却。在He +离子中刺激1S-2S交叉可以导致三光子电离到2+。一种技术,可以实时和一个个体的一部分来检测这些离子。这被用作光谱法的灵敏和背景检测程序。虽然可以在深层紫外线中进行成熟激光系统的氢光谱法,但有必要刺激1S-2S过渡到He +窄带辐射,波长为60,8 nm。这是在极端紫外线(XUV)中,那里没有永久线激光器。取而代之的是,红外频率梳子的高度密集脉冲在夸张谐振器中的夸张谐振器中转换为XUV。产生的XUV频率梳子的离散时尚可以有效地下雨并实现高光谱分辨率。产生高和谐的频率梳需要特殊的光谱纯度,因此可以在XUV中实现狭窄的时尚。在这项工作的第二部分中,描述了满足此要求的稳定频率梳系统的结构。作为这项工作的一部分,已证明了一项新技术来测量谐振器稳定激光系统的噪声噪声。