在研究(电)化学反应时,电化学和光谱技术的组合会产生互补信息。电化学技术提供了精确的定量,并具有以较低零件(ppm,mg/l)浓度范围或涉及亚单层覆盖率的表面过程分析解决方案的可能性。电化学方法的缺点是它们为目标反应提供了有限的特异性。信息是一维的,因为研究人员可以在给定的潜力下监视电子的流量,但是很难将当前信号归因于单个过程。光谱法(如拉曼光谱法)提供了分子信息,并有可能监测化学过程的发生。
1 汽车电子、聚合物与包装工程技术,罗伯特·博世有限公司,72770 罗伊特林根,德国;erick.franieck@de.bosch.com(EF);martin.fleischmann@de.bosch.com(MF)2 柏林工业大学电气工程与计算机科学学院,13355 柏林,德国 3 系统集成与互连技术,弗劳恩霍夫 IZM,10623 柏林,德国;ole.hoelck@izm.fraunhofer.de 4 罗伊特林根大学应用化学学院过程分析与技术中心(PA&T),Alteburgstrasse 150,72762 罗伊特林根,德国; larysa.kutuzova@Reutlingen-University.de 5 罗伊特林根研究所 (RRI), 罗伊特林根大学, Alteburgstrasse 150, 72762 Reutlingen, 德国 * 通讯地址:andreas.kandelbauer@reutlingen-university.de;电话:+49-7121-271-2009
软件工具:• 化学过程分析和优化:Aspen Plus。• 生化过程模拟:SuperPro Designer。• 热力学循环和热电厂模拟:EBSILON Professional。• 太阳能热电厂动态模拟:STEC/TRNSYS。• 生命周期评估、LCA 和碳足迹:Simapro 7.2 Professional。• 可持续性分析:GaBi Professional 和 DEA-Solver Pro。• 能源规划和热流体动力学:LEAP。• 过程模拟和数据分析:Matlab-Simulink。• 电力电子电路模拟:PLECS。• 数据采集、过程控制和量热回路:LabVIEW。• 3D 计算机辅助设计:SolidWorks 和 KUDO 3D。• CFD 分析:COMSOL Multiphysics。• 射线追踪:TracePro。• 电力系统:IPSA 和 PowerWorld。• 计算化学:Chemcraft、Gaussian 和 Vasp。
麻省理工学院的 Nancy Leveson 开发的因果关系模型。该模型启发了几种新方法,从事故分析(如基于 STAMP (CAST) 的因果分析)到危险分析(如系统理论过程分析 (STPA))。与基于事件链因果关系模型且通常仅识别组件故障的传统方法不同,STPA 可用于识别设计缺陷、组件交互以及导致事故的人为因素。尽管 STPA 比传统方法对人为错误采取了更为周到的方法(要求分析师考虑系统条件如何导致“错误”),但它并未提供广泛的指导来理解人类行为方式的原因。之前已经做出努力将此类指导添加到 STPA,但尚未出现一种使用 STPA 检查人类行为的广泛接受且易于使用的方法。
摘要。本文展示了如何使用一种新的危害分析技术 STPA(系统理论过程分析)在概念开发阶段的早期生成高级安全要求,然后帮助设计系统架构。在做出决策时,可以使用 STPA 来细化这些一般的系统级要求。该过程与设计和生命周期的其余部分密切相关,因为 STPA 可用于提供信息以协助整个开发甚至运营阶段的决策。STPA 也适用于基于模型的工程过程,因为它在系统模型上工作(在做出设计决策时也会进行细化),尽管该模型与当今通常为基于模型的系统工程提出的架构模型不同。该过程促进了整个开发过程的可追溯性,因此可以更改决策和设计,而对重新进行以前的分析的要求最低。最后,虽然本文描述了与安全性相关的方法,但它可以应用于任何新兴系统属性。
本研究考虑了识别安全约束和为使用神经网络控制系统 (NNCS) 的深度强化学习 (RL) 战术自动驾驶仪开发运行时保证 (RTA) 的问题。本研究研究了 NNCS 执行自主编队飞行而 RTA 系统提供防撞和地理围栏保证的特定用例。首先,应用系统理论事故模型和过程 (STAMP) 来识别事故、危险和安全约束,并定义地面站、载人飞行长机和代理无人僚机的功能控制系统框图。然后,将系统理论过程分析 (STPA) 应用于地面站、载人飞行长机、代理无人僚机和僚机内部元素之间的交互,以识别不安全的控制动作、导致每种动作的情景以及降低风险的安全要求。这项研究是 STAMP 和 STPA 首次应用于受 RTA 约束的 NNCS。
推荐阅读 Adam, EE 和 Jr. RJ Ebert。生产和运营管理。新德里:Prentice-Hall of India Private Limited。 Chase, RB, FR Jacobs, NJ Aquilano 和 NK Agrawal。获取竞争优势的运营管理。新德里:Tata McGraw-Hill Publishing Company Ltd。 Dahlagaard JJ、Kristensen, K. 和 GK Kanji。全面质量管理基础过程分析和改进。伦敦和纽约:Taylor and Francis。 Frederick SH 和 GJ Lieberman。运筹学概论。纽约:McGraw-Hill Education。 Gaither, N. 和 G. Frazier。运营管理。新加坡:Thomson Asia Pvt. Ltd. Krajewski, LJ 和 LP Ritzman。运营管理。德里:Pearson Education Pvt. Stevenson, WJ 运营管理。纽约:麦格劳-希尔教育有限公司。Taha,HA运筹学:导论。英国:培生教育有限公司。
完成模块后,学生将能够:•在各个方面解释可持续性; •说明可持续性与当前食品系统的关系; •使用选定的食品的例子为未来开发一种可持续食品系统模型(=未来的可持续供应链概念) - 在经济上可行,环保且在社会上可以接受。模块内容该模块的主要目的是使用选定的食品作为例子来了解可持续性驱动的健康食品生产的概念。因此,该课程将涵盖对食品价值链及其在社会,经济,环境和健康方面的可持续性绩效的整体评估,并将包括:•可持续农业(常规与有机); •环境评估(生命周期分析); •可持续业务的经济基础; •社会方面; •可持续健康的营养原则; •技术挑战; •过程分析教学 /学习方法的原则< / div>
工业 4.0 技术的发展为制造企业的数字化转型创造了空间,这些企业的业务模式越来越依赖于软件和基于数据的服务。虽然一些研究强调制造业别无选择,只能遵循这种转型,但对于企业如何实际管理这种转型,我们知之甚少。本文以一家领先的机械工程公司为例,分析该公司如何组织新数字技术的开发,以及如何改变其组织结构和实践。它基于 22 次访谈和对公司文件的分析。该分析借鉴了双元理论,并扩展到动态过程分析。它表明,数字化转型以支持跨职能合作的结构和实践的发展以及新技能形成方法的创造为前提。开发了与制造企业数字化转型相关的组织变革模型,包括概念验证阶段、部分开发阶段和组织转型阶段。
随着大型系统集成化、智能化程度的提高,其任务过程及系统内交互越来越复杂,人员不安全行为、设备故障、环境干扰等多因素间的复杂相互作用使安全性分析面临更大挑战。针对舰载机安全性,提出一种基于系统建模语言(SysML)与Simulink的舰载机着舰过程一体化系统建模与安全性分析方法。首先,根据任务过程分析,采用多种示意图构建SysML模型,包括系统结构和行为过程;其次,将SysML模型转化为Simulink平台并与之集成,构建具有连续动态特性的实体模型,通过仿真进行安全性分析;最后,以舰载机着舰姿态控制为例,对所提方法进行验证,并在不同扰动条件下对舰载机着舰过程的安全状态进行分析与评估。