摘要 无尾飞机固有偏航控制功率有限和方向稳定性差的缺点。为了在低成本和低风险的无尾配置早期设计过程中解决这些问题,本文提出了一种创新的实验方法,将动态缩放模型安装在风洞中的三自由度装置上,以验证控制律并定量评估飞行品质。推导了无尾演示器在装置上的运动方程,然后对装置约束模型和自由飞行模型的横向飞行动力学进行了比较。根据缩放修正的飞行品质标准,完成了偏航和滚转运动控制增强系统的构建。通过在不同空速和攻角下的稳定飞行员在环飞行证明了所设计的控制律的有效性。通过应用多步机动进行低阶等效系统辨识来评估所实现的闭环飞行品质。尽管在开环情况下偏航会表现出严重的不稳定性,但在低攻角下,荷兰滚模式的闭环飞行品质可以提高到 1 级。
利用海森堡-朗之万方程的解和相应的算子矩方程,讨论了确定开放量子系统刘维尔函数特征频率的等效方法。分析了一个简单的阻尼两级原子,以证明这两种方法的等效性。建议的方法用于揭示相应运动方程的动力学矩阵的结构和特征频率,以及它们对一般二次哈密顿量描述的相互作用玻色子模式的退化。明确讨论了两种模式的量子刘维尔例外点和恶魔点及其退化。观察到了量子混合恶魔例外点(继承、真实和诱导)和隐藏例外点,这些点在振幅谱中无法直接识别。通过海森堡-朗之万方程提出的方法为详细分析无限维开放量子系统中的量子例外点和恶魔点铺平了道路。
相关项目: – 量子淬灭后格点规范理论的量子模拟(https://drive.google.com/drive/u/0/folders/113pm13QIyIRPQuMZiHX-8uRdz9PXEJDf,我体验了使用 Qiskit 的工作,对量子平台的硬件能力进行了基准测试) – 在高级研究技能课程中,关于量子淬灭后的纠缠熵的信息性演讲 – 多临界性和 Yang-Lee 边缘奇点(https://drive.google.com/drive/u/0/folders/17VK53EdXmCIPo5OccIqZI4-_q3cJTXeR,我了解了临界 Ising 模型和三临界 Ising 模型的非幺正变形、截断共形空间方法) – 2D Ising 系统:复杂网络视角( https://drive.google.com/drive/u/0/folders/1mRjI1uBjI9NZe6e5ftRw9Xu0ssCN_Ir4,我有过使用 NetworkX 的经验,使用网络度量来表征临界性)– 哈伯德模型及其原子极限(https://drive.google.com/drive/u/0/folders/13wfrKaYWZAF2HMEzj1dL_Usr_i5NJVqQ,我了解了使用运动方程方法来计算格林函数)。
I. 简介 飞行测试是任何新型飞机开发过程的核心部分。作为测试的一部分,记录飞机在各种机动过程中的响应,从中可以确定描述其特性的飞机稳定性系数。然后可以使用这些估计值来验证或更新现有的数值模型。但是,测量到的响应有噪声、有偏差,并且可能以不同的速率采样,这可能导致模型不准确。因此,在估算这些稳定性系数之前,飞行路径重建 (FPR) [ 1 , 2 ] 通常是过滤和检查收集的飞行测试数据的一致性的第一步。FPR 是一种过滤技术,通过将飞机运动方程与响应测量相结合来重建飞机状态的时间历史。在这些方程中,飞机被表示为在空中移动的点质量。然而,为了提高燃油效率,飞机结构变得更轻,从而也更灵活。这反过来导致飞机的结构动力学与飞机飞行动态响应具有更大的相互作用。因此,为了正确地模拟这种相互作用,还需要重建结构的动力学和刚体状态。除了气动弹性建模外,跟踪飞机结构变形对于结构等应用也很重要
摘要 建立了倾转旋翼机接近航空母舰的路径规划模型,模型中考虑了倾转旋翼机的特点、着舰任务和航母所处环境。首先,给出了倾转旋翼机在各飞行模式下的运动方程和机动性能,给出了控制变量和飞行包线的约束条件。将倾转旋翼机返航分为3个阶段,对应倾转旋翼机的3种飞行模式,并设定了各阶段的约束条件和目标。考虑到倾转旋翼机的飞行安全性,将航母所处环境描述为可飞空间和禁飞区,并考虑运动航母所引起的湍流和风场的影响设定了禁飞区。将路径规划问题转化为在控制变量和状态变量约束下的优化问题。根据所建模型的特点,结合“逐步”和“一次性”路径搜索策略,设计了一种基于鸽派优化(PIO)的路径规划算法。仿真结果表明,倾转旋翼机能够以合理的着陆路径到达目标点。并通过对不同算法的比较,验证了PIO算法能够解决该在线路径规划问题。
我们基于开放量子动力学理论研究了量子卡诺发动机的效率。该模型包括用于控制等温和等熵过程的子系统以及控制这些过程之间转变的系统-浴 (SB) 相互作用的时间相关外部场。在不同循环频率下,使用这些场下的分层运动方程,在非微扰和非马尔可夫 SB 耦合机制下进行数值模拟。严格评估了应用于整个系统的功和与浴交换的热量。此外,通过将准静态功视为自由能,我们首次计算了量子热力学变量并使用热力学功图分析了模拟结果。对这些图的分析表明,在强 SB 耦合区域,SB 相互作用的场是主要功源,而在其他区域,子系统的场是功源。我们发现,在准静态情况下可实现最大效率,并且效率仅由浴温决定,与 SB 耦合强度无关,这是卡诺定理的数值表现。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0107305
我们分析了将月球传感器测量结果与地月空间传感器在地月拉格朗日点 1 晕轨道上融合的轨道质量性能优势。假设了十几种传感器架构来量化跟踪不同系列地月目标的轨迹估计误差。我们使用了各种几何视角以及仅角度和距离测量。使用无迹卡尔曼滤波器处理度量观测值,底层动力学模型由圆形限制三体运动方程组成。整体轨道质量性能以惯性位置、速度和加速度估计误差的平均值和标准差来表示。结果表明,由四个中纬度窄视野仅角度观察者组成的月球传感器架构可以保持 100% 的轨道保管。对所有地月目标的平均位置 RSS 误差均低于 1 公里。我们发现,增加一个仅基于太空的角度观测者可将平均位置估计 RSS 误差降低五倍。总体而言,最佳架构性能组合包含基于月球和基于太空的角度和范围观测。
现代科学和社会中大多数问题的极端复杂性对我们最好的理论和计算方法提出了非常巨大的挑战。作为一个例子,即使是最强大的超级计算机,也可以基于流动运动方程的直接模拟来预测行星尺度上天气的任务前面的Exascale操作(每秒10亿个流量点操作)。此外,这个和类似的问题通常受到影响解决方案的初始数据和其他参数引起的各种不确定性来源。因此,每个案例研究都需要几个实现,以积累足够的统计信息(集合模拟),从而进一步加强了对计算能力的追求。鉴于电子计算机面临着非常严格的能量限制,因此不断寻求替代模拟策略。在过去的十年中,巨大的效果已经专门用于量子计算机的开发,使用能够利用量子系统同时占据众多状态的硬件设备(量子纠缠)。直接优势是,量子系统原则上可以执行多种并行量子计算,而不是只能在二元状态下运行的经典计算机(位)。最近,没有一天没有
摘要 — 考虑到机械系统动力学分析的多体方法,本文旨在构建一个简单的计算机模型来描述执行纵向运动的固定翼飞机的动力学。为此,分析了一种简化的飞行器模型,该模型没有控制面,具有轴向推力,并且空气动力学作用有限。然后使用 Digital DATCOM 软件对气动系数进行建模,同时将升降舵也视为控制面。首先,在多体动力学的背景下研究飞机动力学。然后,分析了被视为本文示例的案例研究,即 Cessna 172 Skyhawk 飞机。通过对外部施加的作用和气动系数进行建模,随后分析了飞行起飞阶段背后的基本力学。在本文中,使用拉格朗日公式方法驱动描述示例动态行为的运动方程。然后在 MATLAB 环境中构建的计算机代码中实现了示例的动态模型。通过这样做,该过程的目标是尽可能准确地开发 Cessna 172 Skyhawk 飞机的虚拟模型。如本文使用数值模拟所示,本文分析的案例研究的计算机模型能够模拟
本研究提出了二维功能梯度 (2D-FG) 金属陶瓷多孔梁静态屈曲和自由振动分析的解析解。为了实现这一目标,利用汉密尔顿原理推导出梁的运动方程,然后在 Galerkin 著名的方程解解析法框架内求解导出的方程。梁的材料属性随厚度和长度的变化而变化,符合幂律函数。在功能梯度材料 (FGM) 的制造过程中,可能会由于技术问题导致微孔出现而出现孔隙。本文给出了详细的数学推导并进行了数值研究,重点研究了各种参数(例如厚度和长度两个方向上的 FG 功率指数、孔隙率和细长比 (L/h))对基于新高变形梁理论的梁的无量纲频率和静态屈曲的影响。通过将结果与公认的研究进行比较,验证了所提出模型的准确性。根据屈曲和振动分析的结果,所提出的沿厚度方向的修改的横向剪应力与TBT相比表现出更接近的结果。