运动行为是大脑许多功能和功能障碍的核心,因此了解它们的神经基础一直是神经科学的主要研究重点。然而,大多数运动行为研究都局限于人工、重复的范式,与“野外”进行的自然运动相去甚远。在这里,我们利用机器学习和计算机视觉的最新进展来分析 12 名人类受试者在数千次自发、非结构化手臂伸展运动期间的颅内记录,对每个受试者进行了数天的观察。这些自然运动引发的皮质光谱功率模式与受控范式的结果一致,但在受试者和事件之间具有相当大的神经变异性。我们使用 10 个行为和环境特征对事件间变异性进行了建模;解释这种变异性的最重要特征是伸展角度和记录日期。我们的工作是首批将人类在非结构化运动过程中整个皮质的行为和神经变异性联系起来的研究之一,有助于我们理解长期自然行为。
引言 3 ................................................................................................................
G. E. Hinton。使用放松找到木偶。in proc。A.I.S.B. 夏季会议,1976年7月,第148-157页。 他的第一篇论文!A.I.S.B.夏季会议,1976年7月,第148-157页。他的第一篇论文!
幼儿教育是进入正规教育之前的儿童学习的地方或工具。幼儿教育使用通过游戏学习的概念。通过比赛,希望孩子们会感到积极的影响并成长。脑健身房或大脑体操是一种通过简单运动来提高幼儿期集中能力的方法。幼儿时期需要从外部刺激以支持身体运动,社交情感和语言的成长和发展。大脑健身房的好处是(1)。刺激儿童的浓度水平和专注力。(2)。保持身体健康。(3)。克服儿童的学习问题。(4)。刺激物理运动的发育。(5)。平衡右脑和左脑。使用脑健身房的研究目的是找出Abaou的大脑运动活动,以改善儿童的身体运动发育和浓度水平,儿童的身体健康,健康,可以改善儿童中存在的质量。这项研究中使用的方法是文献研究。孩子们很容易与玩伴交往,并与教育者和朋友进行积极沟通。大脑体育馆会影响儿童的注意力和兴趣增加。这与大脑和身体儿童之间相互关联。
摘要 中枢神经系统计划人类的伸手动作,其运动轨迹通常很平滑,持续时间也相当一致。平滑性似乎可以通过准确性作为主要运动目标来解释,而持续时间似乎可以节省能量消耗。但目前对能量消耗的理解并不能解释平滑性,因此同一运动的两个方面由看似不相容的目标控制。在这里,我们表明平滑性实际上是经济的,因为人类在更剧烈的运动中消耗更多的代谢能量。提出的机制是钙转运激活肌肉的成本与肌肉力量产生率成比例,这种成本被低估了。我们通过实验测试了人类(N = 10)周期性进行双手伸手的能量成本。然后证明了经验成本可以预测平滑、离散的伸手,而此前人们认为这仅仅归因于准确性。因此,机械的、生理上可测量的能量成本可以从经济的角度解释平滑性和持续时间,并有助于解决伸手动作中的运动冗余。
图1:数据处理,分析和建模框架的示意图。(a) - (b)基于对每个受试者的连续视频监测,左右手腕的轨迹(腕部和腕部r(b)中的腕部)使用神经网络估算(Mathis等人。,2018年),并自动分为移动(灰色)和静止(白色)状态,如(b)中所示。(c) - (d)对原始的多电极电视学(ECOG)进行了过滤并重新引用;从进一步的分析中除去了不良电极(例如,具有伪影的电极)。(e)从视频中检测到的运动开始事件,如(b)所示,使用时间戳对齐ECOG数据。(f)对于每个电极处的每个移动事件,计算光谱功率并将其视为对数尺度频谱图。(g)总结了跨事件和电极,我们根据解剖学注册将光谱从电极投射到8个皮层区域,并在运动事件中计算了中位功率。(h)我们的数据包括12个主题;它们的电极位置显示在MNI坐标中(见图1-1,用于特定的细节)。五个受试者的电极植入了右半球(用星号表示)。为了进行以后分析的一致性,我们反映了这些电极位置,如图所示。(i)为了部分解释低频(LFB:8-32 Hz)和高频(HFB:76-100 Hz)光谱功率的事件神经变异性,我们使用从视频中提取的行为特征在每个电极上填充多个线性回归模型。
运动行为是大脑许多功能和功能障碍的核心,因此了解它们的神经基础一直是神经科学的主要关注点。然而,大多数运动行为研究都局限于人工、重复的范式,与“野外”进行的自然运动相去甚远。在这里,我们利用机器学习和计算机视觉方面的最新进展,分析了 12 名人类受试者在数千次自发、非结构化手臂伸展运动期间的颅内记录,对每位受试者进行了数天的观察。这些自然运动引发的皮质光谱功率模式与受控范式的结果一致,但在受试者和事件之间具有相当大的神经变异性。我们使用十个行为和环境特征对事件间变异性进行了建模;解释这种变异性的最重要特征是伸展角度和记录日期。我们的工作是首批将人类在非结构化运动过程中整个皮质的行为和神经变异性联系起来的研究之一,有助于我们理解长期自然行为。
尽管我们已尽合理努力获得第三方的所有必要许可,以将其受版权保护的内容纳入本文,但其完整引文和版权信息可能未出现在此已接受稿件版本中。在使用本文的任何内容之前,请参阅 IOPscience 上发布的记录版本,了解完整引文和版权详情,因为可能需要获得许可。所有第三方内容均受版权保护,除非记录版本的图表标题另有明确说明。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
1776 年 5 月 27 日,苏格兰移民约翰·罗伯逊·布兰德(有时被称为约翰·布兰特)在挪威中部特隆赫姆峡湾南部渔村胡斯塔德的教堂里被挪威皇家科学协会授予银质奖章。胡斯塔德虽然位于北极圈以内,但略微偏离北纬 63 度线,该线贯穿加拿大努纳武特和育空地区、戴维斯海峡和俄罗斯深层苔原——与启蒙运动时期的传统纬度相比,这里明显是极北地区。然而,在那个春日,当罗斯达尔地方长官埃文·哈默(Even Hammer,1732-1800 年;图 1)走进小木教堂的过道,发表纪念演讲时,他呼吁改革、进步、勤劳、公民美德、公众幸福、对贸易的嫉妒以及政治经济,这种语言将在整个欧洲世界产生深刻而广泛的共鸣,这种语言受到国际潮流的影响,但坚决受到他恰当地称之为“我们寒冷的北方”的当地条件的影响。1 很少有例子能比这更好地证明伟大的都灵人