a School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Street, Harbin 150001, China b Laboratoire Charles Coulomb (L2C) UMR 5221 CNRS-Université de Montpellier, F- 34095 Montpellier, France c Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, China d School of Energy and山东大学的动力工程,Qingdao 266237,中国E Institut Universitaire de France,1 Rue Descartes,F-75231 Paris Cedex 05,法国
近场扫描免疫(NFSI)[1]是一种强大的测量工具,可检测和诊断与电磁(EM)干扰偶联的故障印刷电路板(PCB)[2] [3]或集成电路(IC)[4]。最近的研究表明,如何处理该方法的结果,以估计辐射连续波(CW)干扰的易感性[5] [6]。但是,该方法受到过度测量时间的限制,在工业环境中可能会过时。测量时间取决于表面进行扫描,分析的频率范围和分辨率以及正在测试的设备(DUT)。减少扫描持续时间的一种方法是对扫描位置和利益频率的事先确定,也就是说,DUT在哪里表现出易感性最大值。完成了快速初始测试后,可以将CW模式下的NFSI配置为仅关注这些点和感兴趣的频率并捕获更精确的敏感性图。
摘要 本研究使用具有平面扫描功能的电光 (EO) 传感器演示了基于光子学的 300 GHz 频段近场测量和远场特性分析。待测场在 EO 传感器处上变频至光域 (1550 nm),并通过光纤传送至测量系统。在 13 s 的一维测量时间内,系统的典型相位漂移为 0.46 ◦,小于该时间尺度下相位测量的标准偏差 1.2 ◦。将从测得的近场分布计算出的喇叭天线远场方向图与使用矢量网络分析仪通过直接远场测量系统测得的远场方向图进行了比较。对于与角度相关的参数,我们通过近场测量获得的结果的精度与通过直接远场测量获得的结果相当。我们的近场测量结果与直接远场测量结果之间的旁瓣电平差异(约 1 dB)归因于探针校正数据的过量噪声。我们相信,基于光子学的球形 EO 探针扫描近场测量将为 300 GHz 频段高增益天线的表征铺平道路。
同时发送和接收相同频率的无线信号已被认为是缓解频谱资源稀缺的一种颇具吸引力的方法 [1]。这是通过实现 IBFD 与现有技术相比可能实现的两倍频谱效率来实现的。此外,IBFD 还为电子战领域的同时多功能前端天线系统带来了机遇 [2]。IBFD 面临的主要挑战是自干扰 (SI),即从发射机泄漏到其自身共定位接收机的自干扰 [3]。大多数系统需要非常高水平的自干扰消除 (SIC) 才能正常运行。通常,为了实现预期的 110-130 dB SIC,如图 1 所示,在三个级别实现消除:射频或天线、模拟和数字 [4]-[5]。
摘要:最近,人们对具有负磁导率并在 GHz 和 MHz 频率范围内工作的磁性超材料进行了大量研究。这些超材料结构可用于提高近场无线电力传输系统、地下通信和位置传感器的效率。然而,在大多数情况下,它们只设计用于单一应用。本研究重点研究磁感应波在有序排列的磁性超材料结构中的传输。该结构可同时用于无线电力传输和近场通信。单元由植入在 FR-4 基板上的五匝螺旋线形成。外部电容器用于调节磁性超材料单元的谐振频率。磁感应波的特性,包括反射、传输响应和波导上的场分布,已经得到了广泛的计算和模拟。获得的结果表明,一维和二维磁性超材料配置都具有传导电磁波和传播频率为 13.56 MHz 的磁场能量的能力。还研究了直路径和交叉路径配置,以确定二维超材料板上的最佳配置。
光子跨膜对纳米级光的特殊控制,促进了从生物传感的应用,非线性光学的应用到光催化。许多元信息,尤其是共鸣的元素,依靠周期性来形成集体模式,这使它们受到有限尺寸影响,缺陷和边缘效应的影响,在应用水平上具有相当大的负面影响。这些方面对于连续体(BIC)元信息中的准结合状态尤其重要,由于高质量因素和强大的接近局部增强,集体模式对扰动高度敏感。在这里,使用散射扫描接近局部光学显微镜(S-SNOM)与新的图像处理技术结合使用散射扫描,在单个谐振器水平上的准BIC跨面上的模式形成。发现,准BIC模式的最小大小为10×10单元的细胞形成,比远距离测量值所预期的要小得多。此外,还表明谐振器,缺陷和边缘状态的耦合方向在准BIC模式下显着影响。这项研究是跨境的遥远和近距离响应之间的联系,具有优化空间足迹和活性区域的关键见解,具有增强应用(例如催化和生物光谱和生物镜检查)的希望。
摘要:嵌合抗原受体(CAR)T细胞在临床上产生了巨大影响,但是通过汽车的有效信号传导可能不利于治疗的安全性和功效。使用蛋白质降解来控制CAR信号传导可以在临床前模型中解决这些问题。现有的调节汽车稳定性策略依赖于小分子来诱导全身性降解。与小分子调节相反,遗传回路提供了一种更精确的方法来以自动细胞的方式控制汽车信号。在这里,我们描述了一种可编程的蛋白质降解工具,该工具采用了生物蛋白蛋白的框架,由构成型域的靶标识别域组成的异源蛋白,该蛋白与构建域的靶标识别结构域组成,该结构域募集了内源性泛素蛋白酶体系统。我们开发了利用紧凑的四重残留脱基龙的新型生物oprotacs,并使用纳米病毒或合成亮氨酸Zipper作为蛋白质粘合剂来证明胞质和膜蛋白靶标的降解。我们的生物蛋白酶表现出有效的汽车降解,并且可以抑制原代人T细胞中的CAR信号传导。我们通过构建遗传回路来降解酪氨酸激酶ZAP70来证明我们的生物oprot素的实用性,以响应特定膜结合的抗原的识别。该电路只能在特定细胞种群的情况下破坏CAR T细胞信号。这些结果表明,生物oprotacs是扩展CAR T Cell Engineering工具箱的强大工具。关键字:靶向蛋白质降解,CAR T细胞,哺乳动物合成生物学■简介
神经丝轻链(NFL)是树突和神经元体中存在的神经丝的亚基,它赋予神经元和轴突结构稳定性[1]。神经丝使轴突的径向生长具有高度表达,以年龄的依赖性方式[1]。血清NFL水平响应于中枢神经系统因炎症,神经退行性或血管损伤而增加[1]。nfl也是一种新兴的血液和脑脊液标记,在多种神经系统疾病(如多发性硬化症[2],阿尔茨海默氏病)和最近的脑小血管疾病(CSVD)中,神经司长损伤的脑脊液标记(CSVD)[3]。nfl与淀粉样蛋白β(aβ)在脑膜动脉中的沉积有关,这是脑淀粉样血管病的标志(CAA)[4]。最近,在最近的皮质下梗塞和中风的患者中观察到了血清NFL升高[5]。已经发现脑脊液和血清NFL在白质高强度(WMH)患者中都增加,并且水平与WMH负载,CSVD负担的磁共振成像(MRI)标记相关[6]。
1。Rytov,Sergei Mikhailovich(1953)。“ [电波动和热辐射理论]”。科学学院出版社(俄语)。2。Emslie,A。G.(1961)。“通过紧密间隔的盾牌传递辐射”。3。Cravalho,E。G。; Tien,C.L。; Caren,R。P.(1967)。“小间距对两个介电辐射转移的影响”。传热杂志。89(4):351–358。 doi:10.1115/1.3614396。 4。 domoto,G。a。; Tien,C。L.(1970)。 “平行金属表面之间辐射转移的厚膜分析”。 传热杂志。 92(3):399–404。DOI:10.1115/1.3449675。 5。 Boehm,R。F。; Tien,C。L.(1970)。 “平行金属表面之间辐射转移的小间距分析”。 传热杂志。 92(3):405–411。doi:10.1115/1.3449676。89(4):351–358。doi:10.1115/1.3614396。4。domoto,G。a。; Tien,C。L.(1970)。“平行金属表面之间辐射转移的厚膜分析”。传热杂志。92(3):399–404。DOI:10.1115/1.3449675。5。Boehm,R。F。; Tien,C。L.(1970)。 “平行金属表面之间辐射转移的小间距分析”。 传热杂志。 92(3):405–411。doi:10.1115/1.3449676。Boehm,R。F。; Tien,C。L.(1970)。“平行金属表面之间辐射转移的小间距分析”。传热杂志。92(3):405–411。doi:10.1115/1.3449676。
1个国家主要光子学和仪器的主要实验室,Zju-hangzhou全球科学与技术创新中心,信息科学与电子工程学院,吉安格大学,杭州大学,杭州310027,中国和国际联合创新中心,Zhejiang University,Zhejiang University,Zhejiang University,Hainning Interventian Ginangion Interventical of Electricals Academy明尼苏达州明尼阿波利斯大学的工程,美国3美国3号高级/纳米电子设备和智人智能系统的钥匙实验室312000,中国4物理和数学科学学院物理和应用部,以及颠覆性光子技术中心,南南技术大学,新加坡637371,新加坡