美国马里兰州劳雷尔国会技术大学人为因素系 摘要 卫星操作是远程操作的一个子集,与遥控飞机 (RPA) 和无人驾驶飞行器 (UAV) 操作有相似之处。由于文献中缺乏普遍性,需要增加对与卫星操作相关的无聊、自满、习惯和警惕性的研究。昼夜节律、机组资源管理和轮班工作动态可能会加剧卫星操作中自满驱动的自动化偏见和社会懈怠错误。本理论和应用概述旨在特别关注人为因素研究中的卫星操作文献,以确定需要扩展知识的领域。人在回路中的共性使人为因素经验教训能够从不相关的部门传递到卫星操作,从而潜在地减轻灾难性的人为错误。因此,本文献综述详细说明了加强卫星操作人为因素研究的必要性。关键词 自满、人在回路、遥控飞机、卫星操作、轮班工作 1.简介 美国国防部 (DoD) 每周 7 天、每天 24 小时以人在回路 (HITL) 对太空资产进行指挥和控制 (C2),多个团队以轮班工作模式运作,超出了正常的白班时间。由于复杂性和进入轨道后缺乏维护能力,采购计划办公室通常将最初的开发和资金重点放在卫星系统空间段(也称为航天器)上。航天器系统设计的复杂性导致了只需要偶尔人工干预的自主机器的发展,从而减少了操作员的总体压力 [1]。操作员必须保持警惕,以阻止近乎同等对手的风险和可能降低或永久终止任务能力的在轨异常。航天器和地面架构自主性可能会增加操作员自满的风险,而由于无窗安全操作中心的轮班模式导致的昼夜节律缺陷可能会进一步加剧这种风险 [2, 3]。本研究旨在确定与卫星和远程操作相关的人为因素的当前文献状态。本文详细介绍了自满、机组资源管理 (CRM) 和远程操作环境中的人类动态的背景、意义、当前应用和理论。这篇对当前应用和理论的回顾探讨了文献如何未能将航空经验教训与无人驾驶航天器操作完全融合,以对抗戈登·杜邦的人为因素“肮脏十二人”[4]。
2009 年 2 月 10 日,一颗已报废的俄罗斯军用通信卫星 Cosmos 2251 与一颗活跃的美国商业通信卫星 Iridium 33 相撞。这是两颗在轨卫星首次意外相撞,此次事故产生了近 2,000 块太空垃圾,其中许多至今仍在低地球轨道运行。1 美国空军提供的合轨警告数据显示,铱星星座在那一周内还有 37 次可能的合轨,其中一次的概率比这次事件高出一个数量级。提供给铱星卫星运营商的数据不足以区分他们已经习惯的许多虚假合轨警告和更严重的风险,在这种情况下,运营商没有选择改变卫星的轨道。2 这起事件让商业太空公司有充分的理由寻找或参与替代的 SSA 数据和分析来源,以保护他们在太空中的资产并提高会合警告的准确性。铱星宇宙碰撞并不是唯一值得担忧的原因。随着越来越多的卫星进入轨道,太空物体之间的碰撞警告变得越来越普遍,而且许多涉及的物体已经绕地球运行了几十年,无法进行避让机动。例如,在 2021 年 4 月初,一颗报废的气象卫星可能与一个自 1973 年以来一直在轨道上运行的火箭体相撞。3 这次两人错过了对方,但情况不会总是这样。随着各国在军事和民用行动中越来越依赖太空系统,产生碎片碰撞的可能性对太空资产和国家安全构成了巨大威胁。跟踪在轨运行卫星和其他物体的能力变得越来越重要,这一任务领域被称为空间态势感知 (SSA)。SSA 能力对于保护太空资产至关重要,它们在安全方面发挥着重要作用,因为许多企业、政府和军队都依赖空间系统来执行基本职能。可靠的 SSA 使太空运营商能够更好地了解其他人在太空中做什么,这些信息可用于更好地保护自己的太空资产。随着 SSA 能力的不断提高,SSA 提供商的数量也在不断增加。本文重点介绍商业和国际 SSA 提供商日益增长的活动和能力以及未来几年预计出现的趋势。过去十年左右,许多商业 SSA 公司应运而生,它们现在已成为该领域的主要参与者,将 SSA 数据出售给其他商业公司或与政府合作避免碰撞。