科布伦茨/范登堡,美国。SARah 卫星计划总共三颗卫星中的第一颗于 18 日发射于 2022 年 6 月从美国加利福尼亚州范登堡太空军基地成功发射升空。这三颗卫星与地面部分一起由德国联邦国防军装备、信息技术和使用办公室 (BAAINBw) 采购,确保德国联邦国防军有能力在全球范围内提供成像侦察,无论何时何地。天气。同时,它们支持早期危机发现和危机管理。SARah 一词是一个文字游戏,由合成孔径雷达(成像雷达过程)的缩写和附加的“ah”组成。这颗相控阵卫星重约四吨,使用 SpaceX 的猎鹰 9 号火箭发射进入轨道,并配有特殊的雷达天线。结合计划于今年发射升空的两颗反射卫星,SA-Rah系统可以完全满足用户需求,无论一天中的时间和观测区域的天气条件如何。与连接到两个地面站的相关地面部分一起,它们构成了 SARah 系统。这三颗卫星将取代目前的 SAR-Lupe 侦察系统,该系统自 2007 年以来一直在太空中成功运行。与 SAR-Lupe 一样,三颗 SARah 卫星也应确保运行至少十年。
• 像商业航班一样常规进入轨道,航天飞机依靠自身动力运行,无需升空助推器 • 军用通信、导航、气象和监视卫星(“控制太空的国家将控制世界”] • 建造一台巨大的 96 英寸望远镜,运行在高空,不受大气层的扭曲影响,使天文学家首次能够看到附近恒星周围的行星,观察比通过地面望远镜看到的暗 100 倍的物体,也许还能探测到来自可见宇宙边缘的光,这将有助于我们理解进化和生命的起源 • 建造太空平台,甚至建造太空殖民地,由自己的政府、国旗和法律统治的太空国家 • 建造欧洲太空实验室 • 一个能够摧毁敌方原子弹的永久卫星网络 • 从太空返回原材料并从太阳中提取无限的能量 • 太阳极地任务 • 一场新的工业革命:开发不受重力影响的虚拟真空技术圈制造工厂,从而可以生产出大约 400 种合金,这些合金由在地球引力作用下无法成功混合的金属制成,而地球引力往往会将较轻的金属与较重的金属分离;制造出完美的滚珠轴承;稳定的泡沫;新型半导体材料晶体:以及在完全无菌条件下生产的超纯疫苗和药物。
2020 年 5 月,SpaceX 将美国宇航员用美国制造的可重复使用火箭送入太空,从而使美国政府摆脱了俄罗斯航天发射服务的束缚。该公司即将再次开始一项可能改变游戏规则的任务。未来几个月,SpaceX 计划对该公司旗舰超重型运载火箭 Starship 进行首次轨道试飞(图 1)。Starship 因其可重复使用性、尺寸和功率,将通过低成本发射高达 100 公吨的有效载荷,大大改善进入近地轨道的途径。这将支持公共和私营部门在太空活动的扩展,包括太空旅游、太空太阳能发电以及电信和军用卫星的安装和服务。它还将成为亚轨道点对点旅行网络的基石,该网络将出于商业或国家安全目的在全球范围内快速运送机组人员和货物。一旦进入轨道,星际飞船的第二级就可以充当大型空间站和实验性太空技术的试验台。此外,星际飞船在其燃料补充能力的支持下,将为包括月球和火星在内的深空地点的开发和定居提供支持。鉴于其具有彻底改变众多航天领域的巨大潜力,星际飞船提供了某种“奇点”——一个颠覆先前趋势的点,在此之后,增长有限的假设必须受到质疑。1
随着发射的成本暴跌,现在比以往任何时候都更容易进入轨道。这导致了每年发射的卫星数量的扩散,导致每天的数据的链接下降。地面站收到的数据通常是未经处理的,这使得考虑到大型数据大小,并且并非所有数据都有用。这加上对实时数据处理的需求不断增长,导致对轨道处理解决方案的需求不断增长。在这项工作中,我们通过将不同的图像压缩技术应用于卫星数据来研究基于CNN的对象检测器在受约束设备上的性能。我们检查了Nvidia Jetson Nano和Nvidia Jetson Agx Xavier的功能;低功率,高性能计算机,具有集成的GPU,足够小,可以在板载纳米卫星上装配。我们仔细研究了对象检测网络,包括单镜头多伯克斯检测器(SSD)和基于区域的完全卷积网络(R-FCN)模型,这些模型已在DOTA上进行了预训练 - 在空中图像中用于对象检测的大型数据集。性能是根据执行时间,内存消耗和准确性来衡量的,并与包含具有两个功能强大GPU的服务器的基线进行比较。结果表明,通过应用图像压缩技术,我们能够改善执行时间和内存消耗,从而实现完全可运行的数据集。无损压缩技术的执行时间大约减少了10%,记忆消耗降低了3%,对准确性没有影响。虽然有损耗的压缩技术将执行时间提高了144%,并且记忆消耗减少多达97%。但是,它对准确性有重大影响,具体取决于压缩比。因此,这些压缩技术的应用和比率可能会根据特定任务所需的准确性水平而定。
外层空间对于满足公民的日常生活需求和 21 世纪世界经济的平稳运转至关重要 (ACSC, 20023; 太空基金会, 2023),同时它对军事行动也越来越重要,可以实现和扩大力量倍增器选项的数量,并在和平或战争时期开辟新的创新可能性。因此,一些军事大国正在积极寻求反太空能力,以干扰、破坏或阻止潜在对手的太空能力 (Brown, 2006; ACSC; AWC, 2023)。自 2018 年以来,安全世界基金会 (SWF) 和战略与国际研究中心 (CSIS) 的非机密开源报告每年都会记录越来越多的国家正在开发、测试和实施的反太空能力。目前,反太空能力大致可分为两类:动能和非动能。动能反卫星 (ASAT) 武器旨在通过碰撞或爆炸摧毁目标太空物体。非动能反卫星武器包括定向能武器、射频干扰和网络攻击。这两种不同的武器对目标卫星和太空环境的影响各不相同。动能反卫星武器旨在摧毁卫星,产生大量轨道碎片,并产生永久和不可逆转的影响。非动能反卫星武器可用于暂时或永久破坏或禁用卫星,其效果有时可以逆转。动能反卫星武器可进一步分为两个子类别;它们可以从地球发射时直接上升 (DA) 直接打击太空中的目标,也可以共轨,这意味着它们仅在进入轨道一段时间后才进行打击 (Weeden;Samson,2024 年;Swope 等人,2024 年)。
本手册实施 AFI 91-202(美国空军事故预防计划),并与美国空军部和美国联邦航空管理局关于空军部靶场和设施发射和再入活动的备忘录一致。本出版物介绍了空间系统司令部 (SSC) 靶场采用的、由太空发射三角洲 (SLD) 实施的靶场安全计划。它定义了安全职责和权限,划定了来自或进入 SSC 靶场的所有活动的政策、流程、所需批准和批准/豁免级别,描述了调查和报告事故和事件,包括成立事故临时安全委员会和保存数据的说明。靶场活动包括靶场用户计划在 SSC 靶场执行的任何活动(航空测试/操作、导弹测试/操作、太空发射、发射前处理、再入活动等)。这些靶场活动包括运载火箭、再入飞行器 (RV) 和有效载荷的生命周期,从设计概念、测试、检验、组装和发射到进入轨道,包括航天器(或有效载荷)与运载火箭分离、可重复使用运载火箭 (RLV)/RV 从轨道再入、运载火箭部件未到达轨道的飞回/着陆或撞击。本出版物还定义了总部空间系统司令部 (HQ SSC)、太空发射三角洲 (SLD) 和靶场用户的职责,并描述了位于加利福尼亚州范登堡太空部队基地 (VSFB) 的 SLD 30 [西部靶场 (WR)] 和位于佛罗里达州帕特里克太空部队基地 (PSFB) 的 SLD 45 [东部靶场 (ER)] 的太空发射三角洲安全办公室 (SLD/SE) 和靶场用户界面。靶场用户应熟悉 SSCI
1957 年,随着苏联人造卫星 Sputnik 1 成功发射进入轨道,现代文明终于抵达了外太空,这是人类探索的最后边疆。这一举措预示着一个新时代的开始,一个大国之间激烈竞争的时代,科学探索达到了前所未有的高度。这一时期被称为太空竞赛,它促使美国和苏联向其太空计划投入了不可估量的资源,从而产生了永远改变人类能力的技术进步。从计算机技术到电信和导航,20 世纪下半叶对星空的追逐使得无数应用的发现和发展成为可能,这些应用以无与伦比的方式影响着民用和军事领域。1969 年,随着美国成功将阿波罗 11 号送上月球,太空竞赛达到顶峰,太空时代初期的激烈竞争逐渐被合作所取代。 1972 年,美国和苏联启动了阿波罗-联盟号合作试验计划,随后几年又开展了国际空间站 (ISS) 等合作计划。此外,太空活动的法律性质也开始形成。《外层空间条约》正式名称为“关于各国探索和利用包括月球与其他天体在内的外层空间活动原则的条约”,由美国、英国和苏联于 1967 年签署,目前已有 109 个国家加入。这项联合国条约构成了国际空间法的基本法律框架,禁止在太空部署大规模杀伤性武器,并规定“探索和利用外层空间应为所有国家的福祉和利益而进行,并应成为全人类的领域”。1
在太空建设行业,就像在地球上一样,经常听到“需要进行一些组装”这句话。但两者之间有很大的不同。宇航员需要穿戴厚重的加压太空服并戴着笨重的手套,完成工作任务更加艰巨。根据约翰逊航天中心的要求,位于弗吉尼亚州斯特林的 Thread Technology, Inc. 开发了带有 Push-on Threads ® 的 ZipNut ® 紧固件。顾名思义,这种紧固件可以推上去,而不是转动。该产品最初是为航天飞机和空间站计划开发的,现在已被消防员、核电站维修技术人员和其他参与困难组装任务的人员使用。这些快速连接紧固件既具有螺纹的灵活性和强度,又消除了此前固有的缓慢和错扣的弱点。NASA 已采用 ZipNut 紧固件进行太空行走和机器人太空组装。 1989 年,航天飞机首次开发了一种用于安装紧固件的工具。1992 年,该工具还被空间站采用。该连接技术曾参与 1994 年和 1997 年的两次哈勃太空望远镜维修和保养任务。使用这种特殊的紧固件,可以拉上和拉下连接扶手,以在航天飞机的货舱内移动精密的哈勃仪器。一旦国际空间站的各个部分进入轨道,宇航员的“安全帽”将面临将各种元件拼凑在一起的任务。Thread Technology 正在提供 ZipNuts,以帮助确保快速轻松地连接空间站硬件。由于可以将螺栓推入到位,而不必像传统的螺母/螺栓组合那样转动,因此可以缩短安装时间。Thread Technology 紧固件具有多种优点和功能,也使它们成为更实际应用的理想选择。连接到现有的
火星,与我们最像地球的行星邻居,正在向我们招手。其原始而多样的表面面积与地球陆地表面相等,展现出悠久而迷人的历史,其中不乏撞击事件、火山活动、地质构造以及风成、河流和冰川侵蚀。一个世纪前,天文学家认为他们正在目睹一个垂死的火星文明为应对气候变化的毁灭性影响而做出的最后努力。后来,火星上存在智慧生物的说法被打消,但简单生命形式可能存活下来的期望仍然存在。今天,在向火星发送机器人任务后,我们对这颗行星的看法与早期的浪漫猜想有着惊人的相似之处。我们从轨道航天器上得知,火星经历了剧烈的气候和地质变化。遥远的过去,水流过火星表面,在深深的河道和河流网络中留下了引人注目的证据。然而,今天我们发现这颗行星寒冷干燥。目前还没有证据表明火星上现在存在生命,但在火星温暖潮湿的过去,原始生命是真实存在的。因此,谜团依然存在:我们的类似地球的邻居是如何到达现在干旱、寒冷和几乎没有空气的状态的?生命进化然后灭绝了吗?它留下了化石记录吗?最后但并非最不重要的是,火星经历的变化能否让我们了解一些关于我们自己星球预测的巨大变化的信息?这些问题和其他问题促使科学家和工程师迎接向火星发射任务的巨大挑战。一艘前往火星的航天器必须经历 6 个月以上的旅程,以正确的角度和速度接近火星进入轨道,然后成功运行并返回宝贵的观测数据。有些任务失败了,但成功的回报远远超过了努力和风险。每次成功访问,我们对火星的了解都会大幅增加。四十年的太空观测产生的信息和知识比早期使用地球望远镜的天文学家所能想象的还要多。
为即将到来的太空任务提供导航和通信服务的卫星星座 Telespazio 是莱昂纳多 (67%) 和泰雷兹 (33%) 的合资企业,今天在米兰与欧洲空间局 (ESA) 签署了一份价值 1.23 亿欧元的合同,用于实施月光计划的第一阶段。Telespazio 将牵头一个欧洲公司联盟,负责监督卫星星座的研发,为未来的月球任务提供导航和通信服务。该联盟包括 Telespazio(负责整个系统的总承包商)以及包括 Hispasat、Viasat、Thales Alenia Space Italia、SSTL、Qascom、MDA、KSat、Telespazio UK、Telespazio Iberica、SDA Bocconi、PLIMI、CRAS 和 SI 在内的多家公司,负责该系统的设计、实施和运行认证。月光基础设施位于地月轨道,将利用欧洲导航和通信行业开发的先进技术,经过优化,即使在月球上也能提供可靠的连接和精确的定位。这些服务对于确保安全探索月球表面、从地球持续监测活动和改善任务的运行管理至关重要。月光计划旨在为欧洲航天局和其他空间机构的机构任务以及商业用户提供通信和导航服务,从而为建立稳固的月球经济做出贡献。此外,与最重要的国际空间机构共享的标准 LunaNet 的互操作性将确保各服务提供商之间的合作,提高整个系统的可靠性。月光基础设施将分为三个主要部分:月球空间段,包括提供通信、导航和时间同步服务的月球轨道卫星;月球地面段包括提供服务和管理运营活动所需的控制站和地面基础设施,月球用户段包括星座进入轨道后验证服务所需的终端。由于该系统基于 NASA、ESA 和 JAXA 定义的国际标准,它将根据标准支持月球导航和通信终端。初始配置包括一颗通信卫星和四颗导航卫星,旨在确保广泛覆盖月球南极,这是未来探索月球的关键区域
