在遗传学中,突变有两种类型(一个核苷酸被另一个核苷酸替换)。转换是将嘌呤核苷酸(两个环)变为另一个嘌呤(A ↔ G),或将嘧啶核苷酸(一个环)变为另一个嘧啶(C ↔ T)。所有其他用嘌呤取代嘧啶或用嘧啶取代嘌呤的突变称为颠换。尽管理论上只有四种可能的转换和八种可能的颠换,但实际上转换比颠换更有可能,因为用一个单环结构取代另一个单环结构比用双环取代单环更有可能。此外,转换不太可能导致氨基酸取代(由于碱基对摆动),因此更有可能在群体中以静默取代的形式持续存在。
在控制随机系统中,低概率事件可能使系统走上灾难性的轨迹,而控制的挑战在于开发一种强大的能力来应对此类事件,而不会显著损害基线控制策略的最优性。本文介绍了 CelluDose,一种经过随机模拟训练的深度强化学习自适应反馈控制原型,用于针对随机和异质细胞增殖的自动精准药物给药。药物耐药性可能由目标细胞群的随机和可变突变引起;如果没有适当的给药策略,新出现的耐药亚群会增殖并导致治疗失败。动态反馈剂量控制有望对抗这种现象,但由于细胞动力学的复杂性、模型参数的不确定性以及医疗应用中需要一个可以信赖的鲁棒控制器来正确处理意外结果,将传统控制方法应用于此类系统充满了挑战。在这里,对样本生物场景的训练确定了单一药物和联合治疗策略,这些策略在抑制细胞增殖和应对各种系统扰动方面表现出 100% 的成功率,同时建立了低剂量无事件基线。这些策略被发现对关键模型参数的变化具有高度的鲁棒性,这些参数受显著不确定性和不可预测的动态变化的影响。关键词:强化学习、深度学习、控制、自适应剂量、耐药性
新型栖息地的殖民化通常会导致各种行为的演变。可以使用来自在不同环境中进化行为的紧密相关人群的个体之间的比较来研究行为进化。直到最近,在这些进化相关的生物中,功能上将基因型与行为表型联系起来一直很困难。基因编辑工具的开发将促进基因型的功能遗传分析 - 实际上是罕见的生物中的表型连接,andhasthesthepotentialtsigatigythermigantigallythermigatigyther the行为遗传学的领域,当应用于生态和进化相关的有机体。盲人山洞阿斯蒂亚纳克斯墨西哥群岛提供了一个与殖民化霍比氏菌相关的进化的显着例子。这些鱼类属于墨西哥和德克萨斯州河流的景象鱼类,包括居住在墨西哥东北墨西哥塞拉德尔阿布拉和塞拉山脉地区的盲人洞穴鱼类的居住在墨西哥和德克萨斯州南部的河流。尽管已经在墨西哥曲霉上进行了广泛的研究,但现在也正在研究衍生的行为特征,包括睡眠丧失,觅食的改变和社交行为的减少,现在也正在研究行为进化的基础和神经基础。astyanax墨西哥群已经成为一种强大的基因型模型系统 - 表型映射,因为表面和山洞是干扰素。此外,由于多个洞穴种群已经独立进化了相同的性状,因此可以在该物种中检查重复特征进化的分子基础。测序的基因组和墨西哥曲霉中基因编辑的实施为基因发现和鉴定自然发生变化对行为的贡献提供了一个平台。本综述描述了墨西哥曲霉中行为进化的当前知识,重点是进化行为的分子和遗传基础。可以使用基因编辑工具进行的新研究的多种途径,并讨论这些研究将如何增强我们对行为进化的理解。
当今时代,随着越来越多的动物基因组序列组装被报道,对转座因子 (TE) 的深入分析是进化基因组学最基本和最重要的研究之一。尽管 TE 一般被认为是无功能的垃圾/自私 DNA、寄生因子或有害诱变剂,但研究表明,TE 在几个方面对宿主基因组产生了重大影响,有时甚至是有益的影响。首先,TE 本身是多样化的,因此为基因组提供了谱系特异性特征。其次,由于 TE 构成了动物基因组的很大一部分,因此它们是基因组大小和组成进化变化的主要贡献因素。第三,宿主生物已将许多重复序列选为基因、顺式调控元件和染色质域边界,这些序列改变了基因调控网络,此外还部分参与了形态进化,这在哺乳动物中已有充分证明。在这里,我回顾了 TE 对基因组各个方面的影响,例如动物的基因组大小和多样性,以及哺乳动物基因网络和基因组结构的进化。鉴于许多非模式生物中可能还有许多 TE 家族有待发现,未知的 TE 可能对比以前考虑的更广泛的动物的基因网络做出了贡献。
气候变化威胁着人类的生存条件。将全球变暖限制在可控水平的时间窗口正在关闭。如果超过某个温度阈值,可能会触发气候系统中不可逆转的临界点,使变暖动态失去人类的控制。(Steffen 等人,2018 年)表明,这个阈值可能是 2 度甚至更低。《巴黎协定》意味着中位变暖为 2.6-3.1 度(Rogelj 等人,2016 年)。为降低引发灾难性不可逆转的风险,需要加快气候友好型技术的开发和传播(参见 IPCC,2018 年;Steffen 等人,2018 年;Hagedorn 等人,2019 年)。许多技术解决方案是众所周知的,并且已在市场上可用(IPCC,2018;Hagedorn 等人,2019)。其中一些技术甚至更为优越,例如,如果它们能提高能源效率,
驾驶飞机时,人脑不断接收加速度变化的信息,并根据飞行条件对其进行解释。平稳飞行是指所有平面的加速度都恒定或接近恒定的状态。当加速度出现多个不同幅度的变化时,就会出现湍流飞行。当飞机转弯、爬升或下降,或增加或降低速度时,就会产生加速度,我们可以对其进行解释,并影响我们的控制输入。例如,用力向后拉操纵杆会导致运动方向快速改变,我们感觉到的是“G”。这种感觉的强度很可能会促使我们放松或停止控制输入,以降低变化率(或加速度),从而降低此操作的“G”,并使飞机恢复稳定飞行状态。
