先进空中机动 (AAM) 飞机需要感知系统,以便在城市、郊区、农村和区域环境中实现精确进近和着陆系统 (PALS)。目前批准用于自动进近和着陆的最先进的方法将难以用于支持 AAM 操作概念。但是,来自其他应用和低 TRL 研究的技术和系统使用视觉、红外、雷达和 GPS 方法为 AAM 飞机进近和着陆提供基线感知和传感要求。本文重点介绍基于视觉的 PAL,以演示闭环基线控制器,同时遵守联邦航空管理局的要求和规定。共面算法确定姿势估计,并将其输入到扩展卡尔曼滤波器中。将 IMU 与视觉相结合,为 GPS 拒绝的环境创建传感器融合导航解决方案。状态估计会导致下滑道和定位器误差计算,这对于设计和推导 AAM PALS 的制导律和控制律至关重要。 IMU 和视觉导航解决方案为 AAM PALS 提供了有希望的模拟结果,更高保真度的模拟将包括计算机图形渲染和特征对应。
尖端技术构筑美好未来:先进宇宙应用技术 隼鸟2号离子发动机及其潜在应用 隼鸟2号——自主导航、制导和控制系统 支持龙宫小行星精确着陆 利用星载激光雷达遥感技术实现隼鸟2号航天器的自主着陆 隼鸟2号:系统设计和运行结果 用于高速、大容量数据通信的卫星间光学通信技术 为三朝深空站开发30kW级X波段固态功率放大器 开发世界最高性能薄膜太阳能电池阵列桨片
尖端技术构建美好未来:宇宙应用的先进技术 隼鸟2号的离子发动机及其潜在应用 隼鸟2号——自主导航、制导和控制系统 支持龙宫小行星精确着陆 隼鸟2号航天器利用太空激光雷达和遥感技术自主着陆 隼鸟2号:系统设计和运行结果 用于高速、大容量数据通信的光学卫星间通信技术 为三朝深空站开发30kW级X波段固态功率放大器 开发世界最高性能的薄膜太阳能电池阵列桨片
根据飞行安全基金会进近和着陆事故减少工作组的调查结果和建议,我们检查并分析了航空安全报告系统 (ASRS) 不稳定进近和着陆事件的事件报告数据。本研究的目的是调查报告的导致美国商业航空不稳定进近和着陆运营事件的人为因素。结果显示,不稳定进近不太可能通过复飞合规性做出响应。二项逻辑回归分析揭示了 ASRS 编码的人为因素与不稳定进近继续着陆而不是复飞合规性的可能性之间的关联存在描述性差异。对机组事故报告叙述的内容分析可能允许识别 ASRS 未明确编码的其他促成人为因素,例如决策。此类调查的结果有可能为有效的复飞合规性培训设计提供信息。
4.5.1.2 TBS 指示器配置要求.............................................................. 51 4.5.1.2.1 TBS 指示器放置位置:在跑道中心线延长线上。 51 4.5.1.2.2 HMI 同步 ...................................................................................... 51 4.5.1.2.3 CWP 之间的一致性 ...................................................................... 51 4.5.1.2.4 TBS 指示器显示选择的自定义 ...................................................... 52 4.5.1.2.5 指示器含义的清晰度 ...................................................................... 52 4.5.1.2.6 显示 TBS 指示器的标准 ............................................................. 52 4.5.1.2.7 飞机与指示器的关联 ...................................................................... 52 4.5.1.2.8 隐藏视觉分离功能 ............................................................................. 54 4.5.2 飞机序列表 ............................................................................................. 54 4.5.3 混合模式运行(到达时插入间隙) ............................................................. 56 4.5.4 HMI 上的模式转换显示 ............................................................................. 57 4.5.5 警报HMI ................................................................................................................ 58 4.5.6 操作控制和监控面板 ................................................................................ 59 4.6 使用 TBS 支持工具的工作方法 .............................................................................. 59 4.6.1 排序操作 ...
在仪表进近着陆场景中对无人机进行视觉检测。本研究旨在更好地了解人为因素对飞行员在进近和着陆环境中检测和避免与小型无人机系统发生潜在碰撞冲突的影响。作者试图检查飞行员在模拟仪表进近的视觉部分对可能造成碰撞风险的 sUAS 飞行器的平均视觉检测距离。本研究是一系列有关 sUAS 检测、可见性和防撞的相关现场实验中的第三个(Loffi、Wallace、Jacob 和 Dunlap,2016 年;Wallace、Loffi、Vance、Jacob、Dunlap 和 Mitchell,2018 年)。作者试图为飞行员制定操作策略,以提高在国家空域系统中运行的小型无人机的可见性、检测和防撞能力。
图2. 美国通用航空飞行阶段事故发生率 .............................................................................. 5 图3. FRASCA MENTOR ATD 模拟器 ........................................................................................ 32 图4. S801i 心率监测仪 ........................................................................................................ 33 图5. ECG 波形上的 R-R 间隔 ...................................................................................................... 38 图6. GA 内 AA 的平均 LP 评分 ............................................................................................. 50 图7. GA 内 AA 的平均 AGPT 比值 ............................................................................................. 50 图8. GA 内 AA 的平均 NASA-TLX MD 评分 ............................................................................. 53 图9. GA 内 AA 的平均 HRV-LF 比值 ............................................................................................. 53 图10. AA 内 GA 的平均 LP 评分 ............................................................................................. 59
PAR 为进近和着陆飞机提供准确的方位角和仰角位置。L3Harris 于 1943 年向美国陆军航空队提供了第一台 PAR,帮助飞行员在恶劣天气下安全着陆。我们的 PAR-2020 系列通过渐进式技术更新不断发展,提供最佳可用技术,具有长期、经济高效的可持续性。全球有超过 20 个武装部队正在使用 L3Harris 有源电子扫描阵列 (AESA) PAR。
醒来时发现卧室里有一架波音 747。如果您曾经飞抵华盛顿国家机场,并想知道为什么您的飞机在着陆前突然转弯,那是因为您的进近没有真正对准跑道。您的进近是在波托马克河的中部,因此您没有产生噪音危害。不幸的是,跑道并没有完全对准河的中部。当天气好的时候,这个程序不会带来什么问题。当天气不好的时候,它可能会很可怕。虽然这通常不被认为是管制员的问题,但您必须记住,任何规定飞机在进近过程中必须在特定时刻的位置的程序都会限制管制员的灵活性。当程序的目的与飞行安全无关时,这尤其令人沮丧。
斐济国家航空法由三级监管体系组成,包括法案、法规和标准文件;其目的是确保在适当情况下遵守和符合国际民航组织的标准和建议措施 (SARPS)。三级监管体系代表斐济的主要立法体系和具体操作规章,以满足国际民航组织安全监督系统八个关键要素中的关键要素 CE1 和 CE2。标准文件 (SD) 由斐济民航局根据 1979 年民航局法案 (CAP 174A) 第 14 (3) (b) 节的规定颁发。在适当情况下,SD 还包含有关当局可接受的标准、措施和程序的技术指导(关键要素 CE5)。尽管有上述规定,并且如果本标准文件中明确指出有此类规定,则可以考虑向管理局提交其他合规方法,前提是这些方法具有补偿因素,可以证明其安全水平相当于或优于本文规定的安全水平。因此,管理局将根据每个案例的自身优点,全面考虑替代方法对个别申请人的背景和相关性。当确定新标准、实践或程序可接受时,它们将被添加到本文件中。