甲氨蝶呤是一种叶酸拮抗剂。2 四氢叶酸是叶酸的活性形式,是嘌呤和胸苷酸合成所必需的。叶酸被二氢叶酸还原酶 (DHFR) 还原为四氢叶酸。甲氨蝶呤的细胞毒性来自三种作用:抑制 DHFR、抑制胸苷酸和改变还原叶酸的转运。3 抑制 DHFR 会导致胸苷酸和嘌呤缺乏,从而导致 DNA 合成、修复和细胞复制减少。3 DHFR 对甲氨蝶呤的亲和力远大于其对叶酸或二氢叶酸的亲和力,因此同时给予大剂量叶酸不会逆转甲氨蝶呤的作用。 2 然而,如果在甲氨蝶呤后不久服用四氢叶酸衍生物亚叶酸钙,则可能会阻断甲氨蝶呤的作用,因为它不需要 DHFR 来激活。2 中等剂量 (> 100 mg/m 2 ) 至高剂量甲氨蝶呤 (> 1000 mg/m 2 )4 加亚叶酸救援通常用于癌症治疗。3 甲氨蝶呤对快速增殖细胞最有效,因为细胞毒作用主要发生在细胞周期的 S 期。3 甲氨蝶呤还具有免疫抑制活性,可能是由于抑制淋巴细胞增殖。5
基于 SMO 薄膜的电导式气体传感器必须加热到高达 550 ◦ C 的温度,才能在 SMO 薄膜表面启动分子吸附过程。通常使用铂作为微加热器材料。这些设备的长期可靠性主要与微机电系统 (MEMS) 结构的机械稳定性有关,该结构用于将微加热器悬浮并与其他集成组件(例如模拟和数字电路)热隔离。然而,先前的研究表明,电迁移和热迁移现象可能会加剧铂微加热器中的应力积累并导致其最终失效。在本文中,我们提出了一种方法来量化空位传输对电迁移和热迁移现象下两种新型微加热器设计中应力积累的影响。第一个设计旨在提高温度均匀性,第二个设计旨在微加热器阵列操作,利用高温度梯度同时在不同的传感器位置提供多个温度。我们的分析表明,热迁移力远高于电迁移力,这意味着这些器件中的高热梯度对空位传输的贡献远大于电子风引起的原子传输。此外,我们计算出,在典型操作条件下,我们提出的设计具有很强的抗空位迁移失效能力,平均失效时间约为 10 15 秒。
摘要 一些赌徒使用马丁格尔或加倍策略来提高获胜机会。本文推导出马丁格尔策略的重要公式,例如分布、期望值、利润标准差、损失风险或一轮或多轮马丁格尔的预期赌注。本文介绍了使用 R 对加倍策略进行的计算机模拟研究。比较了对简单机会(红色或黑色数字、偶数或奇数以及低(1-18)或高(19-36)数字)和单个数字(直接赌注)进行恒定大小赌注加倍赌博的结果。从长远来看,由于期望值为负,损失是不可避免的。马丁格尔策略和单个数字的恒定下注策略比简单机会的恒定下注策略风险更大。然而,这种更高的风险导致短期内获得正利润的机会更高。但另一方面,风险越高,双倍下注者和单倍下注者遭受的损失要远大于固定下注者遭受的损失。 1. 简介 马丁格尔系统是轮盘赌中一种流行的下注策略:每次赌徒输掉赌注时,他都会将下一次赌注翻倍,这样最终获胜时,他的利润将等于原始赌注。然而,马丁格尔系统只有在没有赌桌限制且赌徒有无限资金的赌场中才能安全地发挥作用。这两个假设都不太可能实现。因此,马丁格尔
用于多种应用的社区电力存储系统有望对家用电力存储系统有益。更经济的灵活性选项,例如需求响应和行业耦合,可能会降低存储设施的市场规模。本文通过考虑竞争激烈的选项来评估社区电力存储系统的经济性能。为此,应用了与参与者相关的基于方案的优化框架。结果与文献一致,并表明社区存储系统在经济上比家庭存储系统更有效。可能会降低社区存储系统而不是家庭存储系统,因为最终用户的需求和发电量平衡。平均而言,在基本案例中,每个家庭的存储容量减少9%,从而导致较低的特定投资。同时应用需求侧的灵活性选项,例如行业耦合和需求响应,可以进一步降低社区存储规模高达23%。同时,灵活性选项之间的竞争会导致社区存储功能潜力的较小利益,从而降低了这些应用程序的市场生存能力。在最坏的情况下,在灵活性措施之间,蚕丝的影响达到38%。功能障碍的损失优于减少能力的节省,从而使部门耦合构成的影响因素远大于需求响应。总体而言,考虑到规定的成本趋势,规模经济和减少可能性,可能会在2025年至2035年之间达到培训仪的存储模型。未来的工作应集中在政策框架的分析上。
平均年温度范围从北极的-20℃到赤道的30℃约30℃(图1)。该基线温度范围为50℃,远大于人为气候变化而导致的地球预期变暖:根据未来排放,IPCC估计,到2100年,全球表面温度将升高1。4°C至4。 5℃与工业前水平相比(IPCC,2021)。 因此,尽管赤道纬度的气候变化将非常昂贵,但它已经很热,但在极地纬度上会产生更大的良性效果,在当今的温度太冷,无法促进大量的人和经济活动。 因此,气候变化是一种空间现象。 如果某些地区势必会变得更糟,而另一些地区可能会更好,那么在太空中可以改造人口和经济活动来减轻全球变暖的影响? 一个约束可能是土地可用性。 但是,根据G-Econ 4.0的数据,2005年世界GDP的91%仅在全球10%的土地上生产。 人口的相应数量为75%(Desmet和Rossi-Hansberg,2015年)。 使用4°C至4。5℃与工业前水平相比(IPCC,2021)。因此,尽管赤道纬度的气候变化将非常昂贵,但它已经很热,但在极地纬度上会产生更大的良性效果,在当今的温度太冷,无法促进大量的人和经济活动。因此,气候变化是一种空间现象。如果某些地区势必会变得更糟,而另一些地区可能会更好,那么在太空中可以改造人口和经济活动来减轻全球变暖的影响?一个约束可能是土地可用性。但是,根据G-Econ 4.0的数据,2005年世界GDP的91%仅在全球10%的土地上生产。人口的相应数量为75%(Desmet和Rossi-Hansberg,2015年)。使用
捕获的离子是建造通用量子处理器的有前途的候选者,具有单量量[1]和两分(2-5]门,具有量子误差校正所需的保真度[6,7]。通常使用电动 - 二极孔 - 弗尔登过渡实现,在该过渡中,状态寿命足够长,可以通过自发排放来忽略不可忽略,从而导致几分钟[8-10]或更长的时间[11]。 量子转换通常位于在电肢体转变[12]上工作的光学结构域,或在同一歧管内的超细状态之间的微波域中[13]。 尽管超细量子位位于微波域中,但通常使用刺激的拉曼过渡与紧密聚焦的激光束进行操纵,因为短的光波长可以使单Qubit Soperion [14]和离子自由度和运动自由度之间的有效耦合[15]。 利用刺激的拉曼过渡的激光驱动的操作从根本上遭受了光子散射引起的不忠行动[16-18]。 此外,刺激的拉曼操作对大规模量子处理器的缩放是具有挑战性的,因为需要控制许多高强度激光束并与sub-µm精度对齐。 微波辐射可直接驱动超精细或采率量子[15]。 但是,由于微波辐射的自由空间波长远大于激光光的空间,因此自由空间空间选择性和微波辐射的自旋运动偶联是不切实际的。 有,在该过渡中,状态寿命足够长,可以通过自发排放来忽略不可忽略,从而导致几分钟[8-10]或更长的时间[11]。量子转换通常位于在电肢体转变[12]上工作的光学结构域,或在同一歧管内的超细状态之间的微波域中[13]。尽管超细量子位位于微波域中,但通常使用刺激的拉曼过渡与紧密聚焦的激光束进行操纵,因为短的光波长可以使单Qubit Soperion [14]和离子自由度和运动自由度之间的有效耦合[15]。利用刺激的拉曼过渡的激光驱动的操作从根本上遭受了光子散射引起的不忠行动[16-18]。此外,刺激的拉曼操作对大规模量子处理器的缩放是具有挑战性的,因为需要控制许多高强度激光束并与sub-µm精度对齐。微波辐射可直接驱动超精细或采率量子[15]。但是,由于微波辐射的自由空间波长远大于激光光的空间,因此自由空间空间选择性和微波辐射的自旋运动偶联是不切实际的。有如果一个人能够在微波场中设计出较大的空间梯度,则可以增加几个数量级的空间选择性[19]和自旋运动耦合。实现有效微波场梯度的一种方法是将远场微波与强,静态磁场梯度相结合[20-22]。然而,此方法需要辐射原子涂层技术[23 - 25]才能最大程度地减少反应性,因为量子状态状态需要对磁场敏感。另一种解决方案是将离子定位在微波电流导体的近场状态下[15,26,27];在这里,场梯度取决于导体和导体几何形状的距离,而不是微波的自由空间波长。除了这些方法外,最近还使用射频场梯度振荡近距离接近离子的运动频率[28],最近还证明了一种新型的自旋运动耦合。微波技术比激光技术更成熟,并且用于许多日常设备,例如移动电话。它的成本低于激光系统,并且也更容易控制。微波电路也可以直接整合到离子陷阱结构中,这有助于促进基于芯片的离子陷阱的产生,这些陷阱可缩放到量子“ CCD样”设备中[15,29 - 32]。
摘要 —近年来,深度神经网络在医学成像中的各种识别和分割任务中取得了最佳性能,包括脑肿瘤分割。我们发现,分割脑肿瘤面临着数据不平衡的问题,即属于背景类(非肿瘤像素)的像素数量远大于属于前景类(肿瘤像素)的像素数量。为了解决这个问题,我们提出了一个级联结构的多任务网络。我们的模型包含两个目标,即(i)有效区分脑肿瘤区域和(ii)估计脑肿瘤掩模。第一个目标由我们提出的上下文脑肿瘤检测网络执行,该网络起到注意力门的作用,只关注脑肿瘤周围的区域,而忽略与肿瘤相关性较小的远邻背景。与处理每个像素的其他现有物体检测网络不同,我们的上下文脑肿瘤检测网络只处理真实实例周围的上下文区域,这种策略旨在产生有意义的区域提议。第二个目标建立在 3D 空洞残差网络和编码解码网络之下,以便有效地分割大物体和小物体(脑肿瘤)。我们的 3D 空洞残差网络采用跳跃连接设计,使深层的梯度能够直接传播到浅层,从而保留不同深度的特征并用于相互细化。为了从体积 MRI 数据中整合更大的上下文信息,我们的网络利用具有各种内核大小的 3D 空洞卷积,从而扩大了滤波器的感受野。我们提出的网络已经在包括 BRATS2015、BRATS2017 和 BRATS2018 数据集在内的各种数据集上进行了评估,包括验证集和测试集。我们的性能已通过基于区域的指标和基于表面的指标进行了基准测试。我们还与最先进的方法进行了比较。1
大脑平滑或几乎如此,call体渴望或基本,在其中,他们接近Ovipara,尤其是鸟类。因此,某些命令被从其以前的较高位置中删除。Quadrumana,Carnivora,Solidungula,Ruminantia,Pachydermata和Cetacea构成了他的上层阶级的第二个或Gyrencephala。在他们的大脑中,除了小爪猴[狐猴和欧斯特犬吗?在人类中,在更高的发育阶段,大脑在筛叶,[riechlappen],小脑甚至脱水阶段都更大程度地扩散到了大脑的所谓第三叶中。这个第三或后叶与外侧心室的后角和PES Hippocampi Minor认为是人类特有的,因此,他们始终不仅构成迄今为止的命令,而是一个子级阶级。Owen进一步指出,他不能像创造记录的巨人一样对人和猴子如此区别,但是正如Linne和Cuvier所做的那样,必须考虑它们适合动物比较和分类的主题,尤其是因为他无法区分黑猩猩和Bushman和Bushman或Half Form nef Mears Aded Aztec Arcect and arnesence aztect and anderence aztect and arnesence aztect and deparence and arnesence aztect and arnesence aztect and。欧文的观点在我在牛津大学的最后一次会议上的交流中在我看来有所改变,正如雅典报道所报道的那样。最近在1861年1月的“自然历史评论”中,他详细提出了相同的论点。他说,大猩猩的大脑与人的大脑差异远大于低估和最有问题的四肢的大脑,因为人脑中有一部分,是你想要大猩猩的部分。在同一次会议上,Huxley反对欧文的观点,否认人类和猴子的大脑之间存在着如此巨大的结构差异,并提到了Tiedemann的分歧和数字,以支持他的陈述。他认为,关于大脑结构的人与最高猿之间的差异并不像最高和最低猿之间那样大。Huxley维持Agailjst Owen:1。后叶不是人特有的,并且在所有Quadrumanes j 2。横向心室的后角也存在于较高的四倍体J和3中。进一步说,后者对人类解剖学家的一般证词的一般证词是可变的。他承认,
当难以直接连接到大型系统时(例如在岛屿或山区),会建造一个用柴油发电机供电的MG来供电。在韩国,柴油发电机为韩国电力公司 (KEPCO) 管理的 57 个岛屿和一些地方政府管理的岛屿供电。在某些情况下,地方政府管理的岛屿上使用一台柴油发电机,但韩国电力公司管理的岛屿至少安装了三台柴油发电机,两台或两台以上的柴油发电机同时运行。根据韩国电力公司的数据,2019 年,韩国电力公司管理的 57 个岛屿为发电消耗了 77,710 千升柴油,而 2020 年由于新冠疫情导致游客数量减少,消耗了 73,489 千升 [ 1 ]。为了减少化石燃料的使用,韩国自 2012 年以来多次尝试利用可再生能源和 ESS 为 MG 供电。在加沙岛的几次试验中,柴油消耗量与安装可再生能源和 ESS 之前相比减少了约 75% [2]。然而,在韩国,大多数用可再生能源和 ESS 取代柴油发电机的尝试都失败了。有一个 ESS 用于充电或放电,出于经济原因,柴油发电机起着重要作用 [3]。当一个 ESS 以恒定频率运行时,它的优势在于 MG 的频率保持恒定在标称频率。然而,如果可再生能源和负载分布在广阔的区域,即使 ESS 将连接点的电压调节为恒定,MG 各部分的电压也会根据可再生能源发电量和负载而波动。此外,如果 ESS 发生故障,MG 就会断电,这会降低电源的可靠性。考虑到长期电力需求的增长,初始投资成本过高,因为从一开始就需要安装容量远大于满负荷的 ESS。此外,由于 ESS 无法在最佳工作点运行,整个 MG 的效率也会降低。考虑到 MG 的稳定性和可扩展性,必须安装并并行运行多个单位容量小于 MG 最大功率需求的 ESS。为了最大限度地提高整个 MG 的效率,需要确定
摘要:控制人类居住区周围的植被可燃物是减少森林、建筑物和基础设施火灾严重程度以及保护人类生命的重要策略。每个国家在这方面都有自己的规定,但它们的共同点是通过减少可燃物负荷,我们反过来会降低火灾的强度和严重程度。使用无人机 (UAV) 获取的数据与其他被动和主动遥感数据相结合,通过机器学习算法规划野外-城市界面 (WUI) 可燃物突破口的效果最佳。测试了九种遥感数据源(主动和被动)和四种监督分类算法(随机森林、线性和径向支持向量机和人工神经网络),以对五种可燃物区域类型进行分类。我们使用了无人机获取的非常高密度的光探测和测距 (LiDAR) 数据(154 条回波 · m − 2 和 5 厘米像素的正射镶嵌图)、来自 Pleiades-1B 和 Sentinel-2 卫星的多光谱数据以及机载激光扫描 (ALS) 获取的低密度 LiDAR 数据(0.5 条回波 · m − 2 ,25 厘米像素的正射镶嵌图)。通过使用随机森林 (VSURF) 程序的变量选择,对最终变量进行了预选择以训练模型。对这四种算法进行了比较,并得出结论,它们在训练数据集上的整体准确度 (OA) 方面的差异可以忽略不计。结合使用 Sentinel-2 和两个 LiDAR 数据(UAV 和 ALS),随机森林在训练中获得了 90.66% 的 OA,在测试数据集中获得了 91.80% 的 OA。尽管在训练步骤中 SVML(OA = 94.46%)和在测试步骤中 ANN(OA = 91.91%)获得了最高的准确率,但随机森林被认为是最可靠的算法,因为它由于训练和测试性能之间的差异较小而产生了更一致的预测。所用数据源之间的准确率差异远大于算法之间的差异。使用不同日期的点云和一年中不同季节的多光谱信息计算的 LiDAR 增长指标是分类中最重要的变量。我们的研究结果支持无人机在防火带规划和管理以及因此在预防森林火灾方面的重要作用。