在支持所谓的表面晶格共振(SLR)的光学元面积中。5,10后者提供了在大面积上易于制造的优势,并且可能在集成光子学中使用。与原子的气体(BEC的原始平台)相反,11个激子北极星的寿命很短。这些短寿命限制了基态的EP密度的堆积,从而导致凝结阈值增加。因此,EP凝结需要强大的激光系统来产生足够高的激子并达到阈值,这使得Polariton激光不适合大多数应用。在本文中,我们通过显着降低由硅(SI)跨表面形成的全电腔中的损耗来证明较低的阈值EP构度,从而增加了EP寿命。最近的努力成功地通过取代支持MIE-SLR的低损坏介电元表面的等离子介电元表面来减少凝结阈值。12由于SLR的高Q因子(400 - 700),部分原因是材料损失的减少,凝结阈值显着降低。在这里,我们通过
背景:主动辅助生活 (AAL) 是指旨在改善生活质量、帮助独立生活和为在人生任何阶段需要帮助的人创造更健康的生活方式的系统。随着加拿大老年人口的增长,迫切需要非侵入性、连续性、适应性强且可靠的健康监测工具来支持居家养老并降低医疗保健成本。AAL 具有巨大的潜力,目前有各种各样的解决方案可以支持这些努力;然而,还需要做更多的工作来解决护理接受者及其护理提供者对将 AAL 整合到护理中的担忧。目标:本研究旨在与利益相关者密切合作,确保 AAL 的系统服务集成建议与医疗保健和相关医疗系统的需求和能力保持一致。为此,进行了一项探索性研究,以了解对 AAL 技术使用的看法和担忧。方法:与利益相关者进行了总共 18 次半结构化小组访谈,每个小组由来自同一组织的几名参与者组成。这些参与者团体被分为护理组织、技术开发组织、技术整合组织以及潜在的护理接受者或患者倡导团体。访谈结果使用主题分析进行编码,以确定未来的步骤和机会
1新加坡新加坡国家神经科学研究所神经病学系; 2新加坡新加坡杜克 - 纳斯医学院; 3新加坡新加坡南南技术大学的李孔钟医学院; 4新加坡新加坡国立大学Yong Lio Lin医学院的睡眠与认知中心和转化中心研究中心; 5麦吉尔大学衰老研究中心,阿尔茨海默氏病研究中心,道格拉斯研究所,道格拉斯研究所,勒斯特·内格雷大学(Le CenterIntégré大学)加拿大蒙特利尔大学; 6加拿大蒙特利尔麦吉尔大学蒙特利尔神经学院; 7加拿大蒙特利尔麦吉尔大学神经与神经外科系; 8新加坡新加坡国立大学电气和计算机工程系; 9综合科学与工程计划(ISEP),新加坡国立大学,新加坡,新加坡1新加坡新加坡国家神经科学研究所神经病学系; 2新加坡新加坡杜克 - 纳斯医学院; 3新加坡新加坡南南技术大学的李孔钟医学院; 4新加坡新加坡国立大学Yong Lio Lin医学院的睡眠与认知中心和转化中心研究中心; 5麦吉尔大学衰老研究中心,阿尔茨海默氏病研究中心,道格拉斯研究所,道格拉斯研究所,勒斯特·内格雷大学(Le CenterIntégré大学)加拿大蒙特利尔大学; 6加拿大蒙特利尔麦吉尔大学蒙特利尔神经学院; 7加拿大蒙特利尔麦吉尔大学神经与神经外科系; 8新加坡新加坡国立大学电气和计算机工程系; 9综合科学与工程计划(ISEP),新加坡国立大学,新加坡,新加坡
1 Ghannam诊所,吉达,沙特阿拉伯; 2 Almana Group of Hospitals,沙特阿拉伯Dammam; 3国民警卫队(卫生事务)和沙特·阿卜杜拉齐兹国王国际医学研究中心国王国际医学研究中心,沙特阿拉伯利雅得市; 4沙特阿拉伯利雅得国王法哈德医疗城; 5国民警卫队(卫生事务),利雅得国王阿卜杜勒齐兹医学城和沙特阿卜杜拉西兹国王卫生科学大学,沙特阿拉伯利雅得; 6沙特阿拉伯吉达的家庭医学国际医疗中心; 7号达拉医院,沙特阿拉伯,沙特阿拉伯; 8沙特阿拉伯利雅得的Sulaiman Al Habib医学集团; 9开罗大学,开罗,埃及和GNP医院,吉达,沙特阿拉伯; 10吉达大学,沙特阿拉伯吉达; 11沙特阿拉伯吉达的Soliman Faineh医院; 12 Merck Serono中东FZ-LTD,吉达,沙特阿拉伯
具有连续体束缚态的硅槽形纳米立方体高效二次谐波产生 方慈哲,杨奇宇,袁清晨,顾林鹏,甘雪涛*,邵瑶,刘燕,*韩根泉,郝越 方聪,杨倩,刘英教授,韩刚教授,郝英教授 西安电子科技大学微电子学院宽禁带半导体技术国家重点实验室,西安 710071,中国 电子邮件:xdliuyan@xidian.edu.cn 袁倩,顾琳,甘雪教授 西北工业大学物理科学与技术学院,工业和信息化部光场操控与信息获取重点实验室,陕西省光信息技术重点实验室,西安 710129,中国 电子邮件:xuetaogan@nwpu.edu.cn Y.邵 国家电网上海能源互联网研究院,上海市浦东新区李冰路251号,201210,中国 刘宇 教授 智能芯片与器件研究中心 浙江省重点实验室,杭州,311121,中国 关键词:二次谐波产生,连续体中的束缚态,硅,介电纳米结构 具有中心对称性的光学材料,例如硅和锗,不幸的是
图 4 成像簇的生物标志物和临床关联。A、该图显示四个 flortaucipir 簇的早期阿尔茨海默病 31 (SPARE-AD) 识别异常空间模式的中位数和四分位距 (x 轴) 和大脑年龄差距 (y 轴)。B、tau 簇的临床进展从认知无显著 (CU) 到轻度认知障碍 (MCI)/痴呆。C、tau 簇的临床进展从 MCI 到痴呆。D、该图显示三个磁共振成像 (MRI) 簇的 SPARE-AD 的中位数和四分位距 (x 轴) 和大脑年龄差距 (y 轴)。E、萎缩簇的临床进展从 CU 到 MCI/痴呆。F、萎缩簇的临床进展从 MCI 到痴呆。G、flortaucipir 和 MRI 簇组合的患病率。 H、I、评估萎缩与 tau 簇之间关联的多项逻辑回归模型的相对风险比 (RRR)。在 (H) 中,以边缘系统为主簇为参考、白质高信号 (WMH) 体积和 tau 簇为预测因子(在 y 轴上)的多项逻辑回归模型。在 (I) 中,以 tau 簇 I 为参考、载脂蛋白 E ε 4 和 MRI 簇为预测因子(在 y 轴上)的多项逻辑回归模型。红色表示显著关联。灰色表示不显著关联。X 轴为对数刻度。J、flortaucipir 亚簇和 MRI 簇组合的患病率。HSp,海马保留;LP,边缘系统为主
1 天津市成像与传感微电子技术重点实验室,天津大学微电子学院,天津 300072 2 天津大学电气与信息工程学院,天津 300072 3 东南大学信息科学与工程学院,毫米波国家重点实验室,南京 210096 4 西安电子科技大学电子工程学院,高速电路设计与电磁兼容教育部重点实验室,西安 710071 5 华为技术有限公司,上海 518129 6 伦敦大学学院电子与电气工程系,伦敦 WC1E7JE,英国 7 浙江大学信息与电子工程学院,浙江省微纳电子器件与智能系统重点实验室,杭州 310027
人工智能 (AI) 和深度学习 (DL) 现已无处不在,应用范围从个人助理到医疗保健。如今,随着移动计算和物联网的加速迁移,广泛的终端设备会产生大量数据,这决定了边缘计算范式的兴起,在这种范式中,计算资源分布在具有高度异构容量的设备之间。在这种分散的情况下,高效的组件放置和资源分配算法对于最佳地协调计算连续资源至关重要。在本文中,我们提出了一种工具,可在设计时有效解决 AI 应用程序的组件放置问题。通过随机贪婪算法,它可以确定在异构资源(包括边缘设备、基于云 GPU 的虚拟机和功能即服务解决方案)中提供性能保证的最低成本放置位置。
抽象的高阶拓扑绝缘子,正如新发现的非平凡的材料和结构一样,具有超出常规散装的对应关系的拓扑阶段。在先前的研究中,诸如角状状态之类的间隙边界状态被认为是高阶拓扑绝缘子出现的确定证据。在这里,我们提出了光子高阶拓扑绝缘子的实验性观察,其角状态嵌入了整体频谱中,并表示为连续体中的高阶拓扑结合状态。尤其是,我们提出并在实验中展示了一种新的方法来识别拓扑角状态,通过与光子量子叠加状态的散装状态分开刺激它们。我们的结果将连续性的拓扑结合状态扩展到高阶案例,从而提供了一种前所未有的机制,以实现大量频谱中的稳健和局部状态。更重要的是,我们的实验表现出使用量子叠加态的时间演变来识别拓扑角模式的优势,这可能会阐明量子动力学和高阶拓扑光子学之间的未来探索。
接触力是人类与周围物理世界互动的自然方式。然而,我们与数字世界的大多数互动主要基于简单的二元触觉(接触或非接触)。同样,当与机器人互动执行复杂任务(例如手术)时,包括大小和接触位置在内的更丰富的力信息对于任务执行非常重要。为了应对这些挑战,我们提出了 WiForce 的设计和制造,它是一种“无线”传感器,可以感知接触力的大小和位置。WiForce 通过将力的大小和位置转换为反向散射标签的入射 RF 信号的相位变化来实现这一点。因此,相位变化被调制到反向散射 RF 信号中,从而通过推断反射 RF 信号的相位来测量力的大小和接触位置。WiForce 的传感器设计用于支持高达 3 GHz 的宽带频率。我们在不同的环境下以无线方式评估力感应,包括通过幻影组织,并实现 0.3 N 的力精度和 0.6 mm 的接触位置精度。