在基于测量的量子计算 (MBQC) 中,计算是通过对纠缠态进行一系列测量和校正来完成的。流和相关概念是描述校正对先前测量结果的依赖性的强大技术。我们引入了基于流的量子计算方法,该方法具有连续变量图状态,我们称之为 CV-流。这些方法受到量子比特 MBQC 的因果流和 g-流概念的启发,但不等同于它们。我们还表明,具有 CV-流的 MBQC 在无限压缩极限下可以很好地近似任意幺正,从而解决了无限维设置中不可避免的收敛问题。在开发我们的证明时,我们提供了一种将 CV-MBQC 计算转换为电路形式的方法,类似于 Miyazaki 等人的电路提取方法,以及一种基于 Mhalla 和 Perdrix 的量子比特版本在存在 CV 流时查找 CV 流的有效算法。我们的结果和技术自然扩展到具有素数局部维度的量子位元的 MBQC 量子计算的情况。
在各种健康状况中,农村卫生缺点在很大程度上有据可查,这在很大程度上是由于农村地区的老年人和社会经济处境不利的人群和有限的医疗服务所致。1然而,在现有研究中,疼痛中的农村城市差异,尤其是慢性疼痛(即疼痛持续了3个月以上)。这代表了一个很大的差距,因为慢性疼痛和高影响力疼痛(即HICP,与日常生活或工作活动的局限性相关的慢性疼痛)已被认为是美国在过去二十年中的普遍性提高2,3,以及实质性的健康和经济后果(例如,不断危害的风险和不在意的风险)和健康状况,鉴于它们的普遍性上升,因此在美国引起了公共卫生的关注。3–5只有有限的研究表明,与城市和郊区的同行相比,农村居民的疼痛结果更差,6,7,关于疼痛的发展和恢复在农村城市连续体中的不同知之甚少。利用2019 - 2020年国家健康访谈调查纵向队列(NHIS-LC)数据,本研究提供了首次分析,以评估不同疼痛状态之间过渡的农村城市差异,没有疼痛,非智力疼痛,慢性疼痛,慢性疼痛和HICP以及这些差异如何在不同人群中发生变化。
动物行为跨越了许多时间尺度,从短时,秒的动作到每天的节奏,到衰老期间的终生变化。为了访问较长的行为时间尺度,我们以每秒100帧的速度记录了单个果蝇Melanogaster,每次在蔗糖媒体上的无特色竞技场上一次最多7天。我们使用深度学习框架切片为47个人生产全身姿势数据集,导致近20亿个姿势实例。我们确定了陈规定型的行为,例如修饰,长鼻延伸和运动,并使用所得的伦理图来探索苍蝇的行为在实验中的一天和几天之间的变化。我们在所有定型行为中发现不同的每日模式,添加了有关不同修饰方式,长鼻延长持续时间和运动速度的趋势的特定信息。Melanogaster昼夜节律周期。使用我们对行为的整体测量,我们发现黎明后的小时是苍蝇日常行为模式中的独特时间点,并且这个小时的行为组成与其他健康指标(例如运动速度和时间的一部分时间花费移动与休息)都很好地跟踪。此处介绍的方法,数据和分析为我们提供了d的新图片。Melanogaster跨时标的行为,揭示了暗示未探索潜在生物学机制的新型特征。
在DevOps实践的核心中是连续集成(CI)和连续部署(CD)管道,它们可以自动化软件交付的关键阶段。连续集成涉及将多个贡献者的代码更改合并为共享存储库,然后通过测试进行自动验证[3]。这确保了及早发现并解决集成问题,从而减少了开发周期后期昂贵的错误的可能性[4]。连续部署,另一方面,将测试代码发布到生产环境中,使组织能够快速可靠地向用户提供更新[5]。一起,这些实践构成了DevOps工作流的骨干,确保了无缝集成,一致的交付和高质量的软件[6]。
Thibaut Faivre:我们目睹了批判性通信的数字化转型。这转化为从窄带到宽带技术的过渡的开始。在某些国家 /地区,公共安全组织已经将其全国性的关键沟通解决方案带到了法国,例如法国,其Réseauduedu Futur(RRF)或西班牙与Sistema de radiocomunicaciones digitales digitales dementes de Empercia del Expencia del Estado(Sirdee)。其他组织正在选择缓慢的过渡策略或混合配置,因为这些类型的过渡是需要大量投资和变更管理的长期项目。无论如何,宽带和窄带技术并非相反,我们可以从两者中获得最好的作用。这两个区域之间有许多连接,几年前就不存在。
我们引入了一个健壮的方案,用于长距离连续变量(CV)测量设备独立的(MDI)量子密钥分布,在该分布中,我们在通过不受信任的继电器介质进行通信的遥远各方之间采用了选择后。我们执行了一个安全分析,该分析允许每个链接的一般透射率和热噪声方差,我们假设窃听器会执行集体攻击并控制通道中的过量热噪声。引入选择后,当事方能够在超过现有CV MDI协议的距离上维持秘密关键率。在中继位置位置的最坏情况下,我们发现当事方可以在标准光学纤维中牢固地沟通14公里。我们的协议有助于克服先前提出的CV MDI协议的率距离限制,同时保持其许多优势。
量子密码术 [1] 是最古老的量子技术之一,已成为应对量子计算机挑战的杰出候选技术 [2]。尤其是量子密钥分发 (QKD),其发展速度非常快,其最终目标是使远距离用户能够共享一个密钥,该密钥必须无法被窃听者获知,从而提供高度安全的加密。QKD 系统面临的关键挑战包括通信系统中的信道损耗和噪声水平。这是影响 QKD 性能及其实现的两个主要障碍,尤其是在长距离传输中 [3]。直到最近,光纤一直是研究和实验大多数 QKD 协议的主要平台。但它们的长距离安全距离有限,主要是因为光纤链路的透射率呈指数衰减。一般来说,有两种解决方案可以克服这一限制:使用量子中继器[4-10]或使用自由空间和卫星链路[11-17]。当前基于地面光纤的量子通信系统的覆盖范围仅限于几百公里[18],而我们似乎即将建立全球量子通信网络,即量子互联网[19,20]。因此,最近的研究引起了人们对星载 QKD 和空间量子通信的浓厚兴趣[17],旨在了解自由空间、高空平台站(HAPS)系统和卫星链路如何帮助突破当前的距离限制,同时保证实现量子安全。人们已经取得了重要进展,特别是在单向空间量子通信的极限和安全性方面[21-23],结果表明,秘密比特可以在湍流大气中安全地分发,无论是弱湍流还是强湍流[24]。在 QKD 科学的另一个不同分支中,独立于测量设备 (MDI) 的 QKD [25,26](相关实验另见参考文献 [27-29])是放宽典型点对点 QKD 协议中的信任假设的最有趣和研究最充分的方案之一。更准确地说,在 MDI 中,人们不需要假设将在他们之间分发密钥的合法方的检测设备是可信的。这是因为据称不受信任的第三方
本论文提出的论点得到了实证证据的支持。我们展示了自动设计的机器人群依靠特定于任务的信号来执行任务的各种场景。在这些实验中,我们考虑了通过单个或并发性能指标来评估群体性能的任务。值得注意的是,我们通过演示将这些想法应用于空间组织行为、基于协同行为的行为、引导行为的自动设计以及机器人群的设计。在这些研究中,我们表明,嵌入在 AutoMoDe 专用模块中的简单单比特信号协议足以克服以前在设计机器人群的空间组织行为方面的限制。此外,我们表明 AutoMoDe 可以利用直接通信能力和基于信息素的协同行为的间接通信。我们说明了 AutoMoDe 利用信号的能力如何不仅促进了群体内的通信,而且还实现了与群体工作空间中其他活动代理的交互。我们还表明,AutoMoDe 可以通过从所需的集体行为演示中学习来进行设计过程。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
