现有的管理高级人工智能系统风险的策略通常侧重于影响开发哪些人工智能系统以及它们如何传播。然而,随着高级人工智能开发者数量的增长,这种方法变得越来越不可行,并且会阻碍有益的用例和有害的用例。作为回应,我们敦促采取一种补充方法:提高社会对高级人工智能的适应性,即减少给定人工智能能力在给定水平的传播所带来的预期负面影响。我们引入了一个概念框架,该框架有助于识别避免、防御和补救人工智能系统潜在有害用途的自适应干预措施,并以选举操纵、网络恐怖主义和人工智能决策者失去控制权为例进行了说明。我们讨论了社会可以实施的适应人工智能的三步循环。提高社会实施这一循环的能力可以增强其对高级人工智能的抵御能力。我们最后向政府、行业和第三方提出了具体的建议。
尿液,免疫和神经系统相互通信,在健康的人体中建立有效的网络。肾脏和膀胱被称为尿液系统的主要部分,并通过输尿管(1-3)连接在一起。尿液系统通过先天和适应性免疫细胞(例如巨噬细胞(M F S))维持稳态。这些免疫细胞表达了广泛的免疫生物分子,包括白介素(ILS)和模式识别受体(PRRS),例如Toll样受体(TLR)。由于这些知识,小胶质细胞作为中枢神经系统(CNS)的专门M f是有效的吞噬细胞,可产生不同类型的PRR,例如TLR。小胶质细胞的功能受到促炎和抗炎性细胞因子受体的调节(4-6)。因此,免疫系统和神经系统在人类泌尿系统中维持体内平衡方面都具有关键作用。由于该主题的重要性,编辑们决定在著名的《免疫学界杂志》中运行目前的有影响力的研究主题。我们的目的是收集强大而有用的研究的宝库。幸运的是,我们成功地试图从54位国际作家那里收集六个主题出版物。在一项横断面研究中,Qin等人。研究系统的免疫输液指数(SII)是一种新型的炎症标记及其与蛋白尿的关联。广泛的协变量,例如种族,性别,体重指数(BMI),年龄,糖尿病,包括吸烟等的行为状况。在这方面,在2005年至2018年期间,来自国家健康和营养检查调查(Nhanes),在2005年至2018年之间,他们获得了与36,463名成年人(女性= 49.04%)有关的36,463名成年人(女性= 49.04%)的相关数据。包括在本研究中。在本次调查中,他们的发现显示了美国成年人中SII与尿白蛋白排泄的增强之间的正相关关系。
对于我们正在处理的系统,经典的PID不足,因为它不是线性系统。PID控制器的启动需要在参数调整中并不总是简单的工作,除了某些方法的存在[10]。尽管有这些方案的帮助,但有必要进行观察期调查控制器的性能,在某些情况下,这需要大量时间。在控制器启动服务中,这可以解释为缺点或困难。在更复杂的情况下,动态现象损害了PID控制器的性能,因此需要重新调整控制器参数。我们接下来要做的是根据参考和实际速度将我们的非线性系统划分为多个线性子系统。就像我们以前所做的那样,我们现在将获得每个不同条件的关键增益和持续振荡时期。
1。一种自我监督的模型登录方法,仅取决于正面匹配对以改善面部嵌入。2。面部聚类的基于深度学习的相似性度量,该指标会自动适应给定模型的学习嵌入空间。3。不需要任何用户输入参数的全自动视频面聚类算法。4。发布电影脸聚类基准数据集,称为MoviefaceCluster,该数据集提供了电影域中存在的极端挑战的面部聚类场景。
使用机器学习(ML)算法在制造过程中嵌入的传感器内部嵌入的信息的进步和识别,以更好地决策成为构建数据驱动的监视系统的关键推动因素。在激光粉床融合(LPBF)过程中,基于数据驱动的过程监视正在广受欢迎,因为它允许实时组件质量验证。加上制造零件的实时资格具有重要的优势,因为可以降低传统的生产后检查方法的成本。此外,可以采取纠正措施或构建终止以节省机器时间和资源。然而,尽管在满足LPBF流程中的监视需求方面取得了成功的发展,但由于不同的过程空间,在处理来自激光材料互动的数据分布的变化时,对ML模型在决策方面的鲁棒性进行了更少的研究。受到ML中域适应性的想法的启发,在这项工作中,我们提出了一种基于深度学习的无监督域适应技术,以解决由于不同的过程参数空间的数据分布的转移。在两个不同的316 L不锈钢粉末分布(> 45 µm和<45 µm)上获得了从LPBF过程区域到三个机制到三个方案的声学发射区到三个方案的声波形式。对应于用不同激光参数处理的粉末分布的声波形的时间和光谱分析显示,数据分布中存在偏移,随后用建议的无监督域适应技术对其进行处理,以具有可以普遍化的ML模型。进一步,两个分布之间提议的方法的预测准确性表明,不受欢迎地适应新环境的可行性并改善了ML模型的推广性。
通过预训练的视觉模型进行测试时间适应,引起了越来越多的关注,以应对测试时间的分离转移。尽管事先实现了非常有前途的性能,但它们会进行密集的计算,这与测试时间适应非常不规则。我们设计了TDA,这是一种无训练的动态适配器,可通过视觉模型进行有效,有效的测试时间适应。tda可与轻巧的键值缓存一起使用,该缓存维持具有很少射击伪标签的dy-namic队列作为值,而相应的测试样本特征则是键。杠杆键值缓存,TDA允许通过渐进式伪标签的细化逐渐调整数据,而逐步测试数据,而不会产生任何反向传播。此外,我们引入了负伪标记,即当模型不确定其伪标签预测时,通过将伪标签分配给某些负类时,可以减轻伪标签噪声的不利影响。在两个基准上进行的广泛实验表明,与最先进的艺术品相比,TDA的实体有效性和效率。该代码已在https://kdiaaa.github.io/tda/中发布。
将驾驶行为适应新的环境,库斯和法律是自主驾驶中的一个长期问题,排除了澳大利亚车辆(AVS)的广泛部署。在本文中,我们提出了LLADA,这是一种简单而强大的工具,它使人类驾驶员和自动驾驶汽车都可以通过调整其任务和动作计划来在新的地方进行访问规则,从而在任何地方开车。llada通过利用大型语言模型(LLMS)在解释本地驾驶员手册中的流量规则方面的令人印象深刻的零弹性可推广性来实现这一目标。通过广泛的用户研究,我们表明LLADA的说明可用于消除野外野外未受的情况。我们还展示了LLADA在现实世界数据集中适应AV运动计划策略的能力; Llada优于我们所有指标的基线计划。请查看我们的网站以获取更多详细信息:Llada。
来自图像的深度估计是具有广泛应用的计算机视觉中的一个长期问题。对于基于视觉的自动驾驶系统,感知深度是理解道路对象和建模3D环境图的相关性的不可或缺的模块。由于深度神经网络用于求解各种视觉概率,因此基于CNN的方法[2-5,13,39 - 42,44,44,46,48,52]主导了各种深度基准。根据输入格式,它们主要将其分为多视图深度估计[3,13,23,26,44,45,51,53]和单视深度估计[14 - 16,19,37,38]。多视图方法估计深度的假设,即给定的深度,相机校准和摄像头姿势,这些像素应相似。他们依靠表现几何形状来三角形高质量深度。但是,多视图方法的准确性和鲁棒性在很大程度上依赖于相机的几何配置以及视图之间匹配的对应关系。首先,需要足够翻译相机以进行三角度。在自主驾驶的情况下,汽车可能会停在交通信号灯处或不移动而不移动,这会导致故障三角剖分。此外,多视图方法遭受动态对象和无动电区域的影响,它们在自动驱动方案中无处不在。另一个问题是对移动车辆的施加优化。在存在的大满贯方法中不可避免地噪声,更不用说具有挑战性和可取的情况了。具体来说,我们提出了一个两个分支网络,即例如,一辆机器人或自动驾驶汽车可以在不重新校准的情况下部署多年,原因是嘈杂的姿势。相比之下,作为单视图方法[14 - 16,19,37,38]依赖于对场景的语义理解和透视投影提示,它们对无纹理区域,动态对象,而不是依赖相机姿势更为易用。但是,由于规模歧义,其性能仍然远非多视图方法。在这里,我们倾向于考虑是否可以很好地结合两种方法的好处,以实现自主驾驶场景中的稳健和准确的单眼视频深度估计。尽管已经在先前的工作中探索了基于融合的系统[1,9],但他们都假定了理想的相机姿势。结果是融合系统的性能甚至比单视深度估计的噪声姿势还差。为了解决这个问题,我们提出了一个新型的自适应融合网络,以利用多视图和单视图方法的优势,并减轻其缺点,以保持高度的精度,并在噪声姿势下提高系统的影响力。一个靶向单眼深度提示,而另一个则利用多视图几何形状。两个分支都预测了深度图和置信图。补充语义提示和边缘细节在多视图分支的成本汇总中丢失了
抑郁症是寻求帮助的主要情绪状况。沮丧的人经常报告持续的反省,这涉及分析和生活中复杂的社会问题。分析通常是解决复杂问题的有用方法,但是它需要缓慢,持续的处理,因此破坏会干扰解决问题。The analytical rumination hypothesis proposes that depression is an evolved response to complex problems, whose function is to minimize disruption and sustain analysis of those problems by (a) giving the triggering problem prioritized access to processing resources, (b) reducing the desire to engage in distracting activities (anhedonia), and (c) producing psychomotor changes that reduce exposure to distracting stimuli.由于处理资源是有限的,对触发问题的持续分析会降低专注于其他事物的能力。该假设得到了许多层次的证据,例如基因,神经递质及其受体,神经生理学,神经解剖学,神经术,药理学,药理学,认知,行为和治疗功效。此外,该假设为抑郁症文献中令人困惑的发现提供了解释,这挑战了抑郁症中5-羟色胺传播较低的信念,并且对治疗有影响。
基础模型是对大量数据进行预训练的大型模型。通常可以以最小的努力来适应各种下游任务。但是,由于基础模型通常是在从互联网中提出的图像或文本上进行预培训的,因此它们在植物表型等植物域中的性能受到质疑。此外,完全调整基础模型是耗时的,需要高计算能力。本文研究了植物表型设置和任务的基础模型的有效适应。我们对三个基础模型(MAE,Dino和Dinov2)进行了大量实验,对三个必需的植物表型任务:叶子计数,实例阶段和疾病分类。特别是,预先训练的骨干被冷冻,同时评估了两种不同的调整方法,即适配器调整(使用lora)和解码器调整。实验结果表明,基础模型可以充分地适应植物表型任务,从而产生与针对每个任务的最先进的模型(SOTA)模型相似的性能。尽管在不同任务上表现出很高的传递能力,但在某些情况下,精细调整的基础模型的表现比SOTA任务特定的模型稍差,这需要进一步研究。