本文研究了企业如何根据气候政策的变化调整清洁和肮脏投入的采购。我们使用来自欧盟排放交易体系 (EU ETS) 和碳边境调整机制 (CBAM) 的信息,根据产品是否受到国内或边境碳税的影响,对清洁和肮脏产品进行新的分类。然后,我们将该数据集与 2000 年至 2019 年法国企业的产品级进口数据相结合,并估计企业从非欧盟国家进口肮脏投入的倾向在 2010 年代有所增加,反映了碳泄漏。然后使用异质企业模型来量化在实施碳税和碳关税的情况下企业清洁和肮脏投入采购变化的影响。模拟的 ETS 碳税情景能够匹配数据中观察到的泄漏,并导致价格水平上升和排放量适度下降。进一步包括 CBAM 碳关税的情景以价格进一步上涨为代价逆转了碳泄漏。总体而言,家庭福利下降是因为碳政策带来的高成本超过了减少排放带来的好处。 JEL 分类:F14、F18、F64、H23、Q56 关键词:企业采购、供应链适应、碳税、碳关税、碳泄漏 ________________ Di Giovanni:纽约联邦储备银行,CEPR(电子邮件:juliandigiovanni@gmail.com)。 Coster:南加州大学(电子邮件:pcoster@usc.edu)。 Mejean:巴黎政治学院,CEPR(电子邮件:isabelle.mejean@sciencespo.fr)。 作者感谢巴黎政治学院、纽约联邦储备银行、杜克大学、慕尼黑大学、南加州大学、玛丽女王学院和欧洲工商管理学院的参与者提供的宝贵意见。 他们还感谢 Sotiros Georgousis 和 Neel Lahiri 提供的出色研究协助。 Mejean 非常感谢法国国家研究机构 (ANR) 监督的公共资助,该资助是“Investissements d'Avenir”计划的一部分(Idex 资助协议编号 ANR-11-IDEX-0003-02/Labex ECODEC 编号 ANR-11-LABEX-0047 和 Equipex 参考:ANR-10-EQPX-17 - Centre d'accès sécurisé aux données - CASD)。本文介绍了初步研究结果,并分发给经济学家和其他感兴趣的读者,仅用于激发讨论和征求意见。本文表达的观点为作者的观点,并不一定反映纽约联邦储备银行或联邦储备系统的立场。任何错误或遗漏均由作者负责。
现有的管理高级人工智能系统风险的策略通常侧重于影响开发哪些人工智能系统以及它们如何传播。然而,随着高级人工智能开发者数量的增长,这种方法变得越来越不可行,并且会阻碍有益的用例和有害的用例。作为回应,我们敦促采取一种补充方法:提高社会对高级人工智能的适应性,即减少给定人工智能能力在给定水平的传播所带来的预期负面影响。我们引入了一个概念框架,该框架有助于识别避免、防御和补救人工智能系统潜在有害用途的自适应干预措施,并以选举操纵、网络恐怖主义和人工智能决策者失去控制权为例进行了说明。我们讨论了社会可以实施的适应人工智能的三步循环。提高社会实施这一循环的能力可以增强其对高级人工智能的抵御能力。我们最后向政府、行业和第三方提出了具体的建议。
•1)科学家对气候变化的了解,包括科学不确定性; •2)气候变化如何影响对美国重要的特定主题; •3)接下来25至100年的气候变化趋势和预计趋势。
使用机器学习(ML)算法在制造过程中嵌入的传感器内部嵌入的信息的进步和识别,以更好地决策成为构建数据驱动的监视系统的关键推动因素。在激光粉床融合(LPBF)过程中,基于数据驱动的过程监视正在广受欢迎,因为它允许实时组件质量验证。加上制造零件的实时资格具有重要的优势,因为可以降低传统的生产后检查方法的成本。此外,可以采取纠正措施或构建终止以节省机器时间和资源。然而,尽管在满足LPBF流程中的监视需求方面取得了成功的发展,但由于不同的过程空间,在处理来自激光材料互动的数据分布的变化时,对ML模型在决策方面的鲁棒性进行了更少的研究。受到ML中域适应性的想法的启发,在这项工作中,我们提出了一种基于深度学习的无监督域适应技术,以解决由于不同的过程参数空间的数据分布的转移。在两个不同的316 L不锈钢粉末分布(> 45 µm和<45 µm)上获得了从LPBF过程区域到三个机制到三个方案的声学发射区到三个方案的声波形式。对应于用不同激光参数处理的粉末分布的声波形的时间和光谱分析显示,数据分布中存在偏移,随后用建议的无监督域适应技术对其进行处理,以具有可以普遍化的ML模型。进一步,两个分布之间提议的方法的预测准确性表明,不受欢迎地适应新环境的可行性并改善了ML模型的推广性。
来自图像的深度估计是具有广泛应用的计算机视觉中的一个长期问题。对于基于视觉的自动驾驶系统,感知深度是理解道路对象和建模3D环境图的相关性的不可或缺的模块。由于深度神经网络用于求解各种视觉概率,因此基于CNN的方法[2-5,13,39 - 42,44,44,46,48,52]主导了各种深度基准。根据输入格式,它们主要将其分为多视图深度估计[3,13,23,26,44,45,51,53]和单视深度估计[14 - 16,19,37,38]。多视图方法估计深度的假设,即给定的深度,相机校准和摄像头姿势,这些像素应相似。他们依靠表现几何形状来三角形高质量深度。但是,多视图方法的准确性和鲁棒性在很大程度上依赖于相机的几何配置以及视图之间匹配的对应关系。首先,需要足够翻译相机以进行三角度。在自主驾驶的情况下,汽车可能会停在交通信号灯处或不移动而不移动,这会导致故障三角剖分。此外,多视图方法遭受动态对象和无动电区域的影响,它们在自动驱动方案中无处不在。另一个问题是对移动车辆的施加优化。在存在的大满贯方法中不可避免地噪声,更不用说具有挑战性和可取的情况了。具体来说,我们提出了一个两个分支网络,即例如,一辆机器人或自动驾驶汽车可以在不重新校准的情况下部署多年,原因是嘈杂的姿势。相比之下,作为单视图方法[14 - 16,19,37,38]依赖于对场景的语义理解和透视投影提示,它们对无纹理区域,动态对象,而不是依赖相机姿势更为易用。但是,由于规模歧义,其性能仍然远非多视图方法。在这里,我们倾向于考虑是否可以很好地结合两种方法的好处,以实现自主驾驶场景中的稳健和准确的单眼视频深度估计。尽管已经在先前的工作中探索了基于融合的系统[1,9],但他们都假定了理想的相机姿势。结果是融合系统的性能甚至比单视深度估计的噪声姿势还差。为了解决这个问题,我们提出了一个新型的自适应融合网络,以利用多视图和单视图方法的优势,并减轻其缺点,以保持高度的精度,并在噪声姿势下提高系统的影响力。一个靶向单眼深度提示,而另一个则利用多视图几何形状。两个分支都预测了深度图和置信图。补充语义提示和边缘细节在多视图分支的成本汇总中丢失了
摘要:本文提出了一种新型的监督学习方法——统计自适应傅里叶分解(SAFD)。SAFD 使用正交有理系统或 Takenaka-Malmquist(TM)系统为训练集建立学习模型,在此基础上可以对未知数据进行预测。该方法侧重于信号或时间序列的分类。AFD 是一种新开发的信号分析方法,它可以自适应地将不同的信号分解为不同的 TM 系统,引入了傅里叶类型但非线性和非负的时频表示。SAFD 将学习过程与 AFD 的适应性特征充分结合起来,其中少量的学习原子足以捕获信号的结构和特征以进行分类。SAFD 有三个优点。首先,在学习过程中会自动检测和提取特征。其次,所有参数都由算法自动选择。最后,将学习到的特征以数学形式表示出来,并可以根据感应瞬时频率进一步研究特征。通过心电图 (ECG) 信号分类验证了所提方法的有效性。实验表明,该方法比其他基于特征的学习方法效果更好。
通过预训练的视觉模型进行测试时间适应,引起了越来越多的关注,以应对测试时间的分离转移。尽管事先实现了非常有前途的性能,但它们会进行密集的计算,这与测试时间适应非常不规则。我们设计了TDA,这是一种无训练的动态适配器,可通过视觉模型进行有效,有效的测试时间适应。tda可与轻巧的键值缓存一起使用,该缓存维持具有很少射击伪标签的dy-namic队列作为值,而相应的测试样本特征则是键。杠杆键值缓存,TDA允许通过渐进式伪标签的细化逐渐调整数据,而逐步测试数据,而不会产生任何反向传播。此外,我们引入了负伪标记,即当模型不确定其伪标签预测时,通过将伪标签分配给某些负类时,可以减轻伪标签噪声的不利影响。在两个基准上进行的广泛实验表明,与最先进的艺术品相比,TDA的实体有效性和效率。该代码已在https://kdiaaa.github.io/tda/中发布。
针对摄像机-LLM系统的域适应技术DOCAS AKINYELE,GODWIN OLAOYE日期:2024摘要:将来自相机的视觉数据与语言模型集成的视觉数据的摄像机模型(摄像头)对于各种应用至关重要,包括各种应用,包括实时图像字幕字幕,对象识别,对象识别,互动AI II系统。但是,这些系统通常由于域的变化而面临挑战 - 相机硬件的差异,环境条件和语言上下文变化。域适应技术通过使模型能够在培训和部署环境方面有效地跨不同领域执行,以解决此问题。本文探讨了与摄像机-LLM系统相关的关键领域适应技术。它涵盖了数据增强,功能一致性,对抗性训练,转移学习和生成模型。此外,它研究了这些技术如何减轻相机数据中变异性的影响并改善视觉输入和语言生成之间的交叉形态对齐。本文还讨论了诸如实时字幕,对象检测和AR/VR等应用程序,以及评估适应性绩效的评估指标。未来的方向指向多域适应性,自适应学习技术和人类在循环系统中。这些进步有望为真实应用程序提供更健壮和广义的摄像头系统。简介摄像机模型(摄像机-LLM)系统代表了视觉感知和自然语言理解的集成方面的重大进步。通过将通过相机捕获的图像数据与复杂的语言模型相结合,这些系统可实现一系列应用程序,从实时图像字幕和对象检测到交互式AI和增强现实体验。随着人工智能的能力继续增长,可以在各种环境中无缝运行的强大摄像头系统的需求变得越来越重要。
1。一种自我监督的模型登录方法,仅取决于正面匹配对以改善面部嵌入。2。面部聚类的基于深度学习的相似性度量,该指标会自动适应给定模型的学习嵌入空间。3。不需要任何用户输入参数的全自动视频面聚类算法。4。发布电影脸聚类基准数据集,称为MoviefaceCluster,该数据集提供了电影域中存在的极端挑战的面部聚类场景。
