蒙古的地理位置对其外交政策的制定和实施施加了一定的限制。蒙古与两个超级大国——俄罗斯和中国——接壤,因此必须将这些国家视为其政策的优先领域。要了解蒙古当前外交政策的趋势,了解该国的历史很重要。本文探讨了蒙古战略和外交政策的演变,特别关注了 1990 年民主革命后的时期。自蒙古帝国以来,历史环境首次为蒙古提供了独立推行外交政策的机会。这项政策被称为“第三邻国政策”,旨在发展与没有共同边界的国家的关系,以帮助维护其独立、国家安全和主权。此外,本文还确定了蒙古如何在平衡与俄罗斯、中国和“第三邻国”的三个双边外交关系方面维持和改善当前关系水平。此外,它还为其他小国如何与世界其他国家和国际组织合作以保护自己的国家安全、主权和独立提供了宝贵的信息。
摘要 FDA 批准免疫检查点抑制剂用于治疗肿瘤突变负担 (TMB) 至少为 10 mut/Mb 的癌症,旨在通过广泛扩大治疗资格来减少医疗保健差距。在一组 39,400 名具有基因组和种族数据的患者中,根据目前批准的临界值,黑人和亚裔患者在多种类型的恶性肿瘤中患 TMB 高癌症的可能性较小。降低 TMB 阈值优先增加了少数族裔患者使用免疫检查点抑制剂的资格,同时保留了接受免疫检查点抑制剂治疗的患者群体的治疗益处的预测值。这项研究强调了不同种族群体中 TMB 高癌症的不同分布,并为制定更合理的免疫检查点抑制剂资格标准提供了指导。
摘要:选择一种电池储能技术应用于海上平台或船舶可能是一项艰巨的任务。海上石油和天然气平台 (OOGP) 需要具有高体积密度、高重量密度、高安全性、长寿命、低维护和良好操作经验等 BESS 特性的电池储能系统 (BESS)。没有一种电池化学可以完美地满足所有这些因素,这意味着需要一种方法来确定最适合特定应用的电池化学。为此,本文提出了文献中提出的 7 步程序的改进版本,以系统和逻辑地确定最适合 OOGP 高能量应用的 BESS。为了实施 7 步程序,对综合和新兴电池化学的最新进展进行了回顾。作为 7 步程序的一部分,还回顾了电池化学的运行经验。然后将 7 步程序应用于北海真实 OOGP 的案例研究(有两个测试案例)。第一个测试案例考虑将 BESS 用于调峰,为此对六种电池化学成分进行了详细评估。计算技术适用性评估 (TSA) 加权分数,该分数基于在考虑的应用中对储能选择至关重要的五个属性,即重量、空间、安全性、生命周期成本和运行经验。在评估的六种电池化学成分中,磷酸铁锂 (LFP) 具有最高的技术适用性评估 (TSA) 加权得分,因此被认为是最适合调峰的电池化学成分。第二个测试案例考虑将 BESS 用于旋转备用。由于这是一种高 C 率应用,因此仅评估了能够实现高 C 率的电池化学成分。从 TSA 评估来看,LFP 和锂镍锰钴具有最高的 TSA 加权分数,因此被认为是最适合旋转备用的电池化学成分。
金属工件的增材制造 (AM) 面临着不断上升的技术相关性和市场规模。生产复杂或高度紧张的独特工件是一个重要的应用领域,这使得 AM 与工具组件高度相关。其成功的经济应用需要基于工件的系统决策和优化。考虑几何和技术要求以及必要的后处理使得决策变得费力,并且需要深入的知识。由于设计通常根据既定的制造进行调整,因此相关的技术和战略潜力往往被忽视。为了将 AM 嵌入面向未来的工业环境中,基于软件的自学工具是必不可少的。将它们集成到生产计划中,使公司能够有效地释放 AM 的潜力。本文提出了一种适当的方法来分析特定于过程的 AM 资格和优化潜力,并提出了具体的优化建议。对于集成的工件特性,成熟的方法通过特定于工具的图形来扩展。该方法的第一阶段指定模型的初始化。使用开发的关键图系统描述了一组学习工具组件。在此基础上,通过聚类和专家评估生成一套适用于特定工件结果确定的规则。在接下来的应用阶段,量化战略方向,并使用开发的关键数据描述感兴趣的工件。随后,根据第一阶段生成的规则集,使用检索到的信息自动生成具体建议。最后,在第三阶段收集有关建议的实际经验。统计学习将这些转移到生成的规则集中,从而不断深化知识库。这一过程使输出质量稳步提高。
摘要:Orchidaceae是世界上最大,最多样化的开花植物家族之一,但也是最受威胁的植物之一。气候变化是植物分布的全球驱动力,可能是它们在某些地区消失的原因。森林兰花与特定的生物和非生物环境因素有关,这会影响其局部存在/不存在。这些条件的变化可能导致物种分布的显着差异。我们研究了属于不同属(头孢烷,epipactis和limodorum)的三个森林兰花,以在北部阿平宁斯的保护区(PA)中的潜在当前和未来分布。根据仅存在的数据为每个物种构建了一个栖息地适用性模型,并将最大熵算法(Maxent)用于建模。气候,媒介,地形,人为和土地覆盖变量被用作环境预测因子,并在模型中处理。目的是确定最大程度地影响当前物种分布的环境因素,以及可能包含适合为森林兰花提供避难所的栖息地的地区,并在未来情况下确保其生存。这将使PA当局能够决定是否将更多资源投资于保护受威胁物种的潜在避难的地区。
科学研究和分析是环境署一切工作的基础。它帮助我们了解和有效管理环境。我们的专家与领先的科学组织、大学和环境、食品和乡村事务部集团的其他部门合作,为解决我们现在和未来面临的环境问题提供最佳知识。我们的科学工作以摘要和报告的形式出版,供所有人免费查阅。本报告是环境署首席科学家小组委托进行的研究的成果。您可以在 https://www.gov.uk/government/organisations/environment-agency/about/research 上了解有关我们当前科学计划的更多信息。如果您对本报告或环境署的其他科学工作有任何意见或问题,请联系 research@environment-agency.gov.uk。
抽象背景常见的低风险变体目前不用于指导家族性乳腺癌(BC)的临床管理。我们探讨了相对于非BRCA1/2荷兰BC家族中标准基因测试的313个基因多基因风险评分(PRS 313)的添加作用。方法,我们包括3492个荷兰非BRCA1/2 BC家族和3474荷兰人口控制的3918例案件。使用逻辑回归模型估算了标准化PRS 313与BC的关联,该模型已针对基于血统的家族史进行了调整。对控件的家族史进行了此分析。ses以说明个人的相关性。使用boadicea(疾病发生率和载体估计算法的乳房和卵巢分析)v.5模型,以有或没有单个PRS 313的方式回顾了终生风险。对于2586例病例和2584个对照,已知atm,CHEK2和PALB2中致病变异的载体状态(PVS)。结果由家族史调整后的PRS 313与BC显着相关(每SD或= 1.97,95%CI 1.84至2.11)。根据美国,英国和荷兰的BC筛查指南(国家综合癌症网络,美国国家健康和护理卓越研究所以及荷兰综合癌症组织),包括BOADICEA家庭风险预测中的PRS 313将改变筛查建议的最高27%,36%和34%的案件。对于人口控制,没有有关家族史的信息,分别高达39%,44%和58%。在已知中等BC易感基因的PV载体中,PRS 313对CHEK2和ATM的影响最大。结论我们的结果支持PRS 313在风险预测中应用于中等BC风险基因的遗传性无信息的BC家族和PV家族。
决策事项:商务部监察长办公室——法定通知要求对现有和预期办公室相关费用的适用性文件:B-335459 日期:2024 年 5 月 8 日 摘要 商务部监察长办公室 (OIG) 在其办公室外部安装了隔音技术,以保护办公室内敏感谈话的隐私。OIG 还计划将其现有家具搬迁至其新的预期办公室,总务管理局 (GSA) 计划进行改造,为 OIG 的入住做好准备。2023 年《金融服务和一般政府拨款法》第 710 条禁止任何机构在未事先通知众议院和参议院拨款委员会的情况下,在总统任命期间承担或支出超过 5,000 美元的金额来为其办公室提供家具、重新装修、购买家具或进行改进。第 710 条适用于为监察长分配的整套办公室以及监察长直接控制或主要使用的任何空间安装隔音技术的费用,即使该技术安装在监察长办公室外围。第 710 条还适用于将家具搬迁到监察长新办公空间的费用,因为这些费用通过提供办公室所需的东西来“装饰”办公室。但是,第 710 条不适用于与监察长预期办公室的建设和改建相关的费用,因为该办公室尚未由监察长直接控制或主要使用,因此不符合第 710 条规定的“办公室”的法定定义。决定
“自动化”一词源于古希腊语“auto”,意为自行运作。从逻辑上讲,“建筑自动化”意味着建筑无需人工干预即可自行完成。为了更广泛地描述它,Castro-Lacouture [1] 将其定义为“一种技术驱动的简化施工流程的方法,旨在提高安全性、生产率、可施工性、进度或控制,同时为项目利益相关方提供快速准确的决策工具。”20 世纪初,随着大规模生产系统 [2] 的出现,其他大型制造业(汽车、航空航天、造船等)的自动化技术开始转向建筑行业。起初,建筑元素被简化为预制部件并在施工现场组装。尽管如此,在这种方法中,自动化水平仍然局限于“场外”制造。组装过程主要由人工完成。现场施工自动化最早出现于 20 世纪 70 年代的日本,由被称为“五大”的大型建筑公司(清水建设、大成建设、鹿岛建设、大林组和竹中建设)投资使用机器人技术。现场施工自动化的发展主要源于人口老龄化,其次是因为年轻一代认为建筑工作困难、肮脏且危险 [3],对施工工作没有吸引力。出于这些原因,人们提出了两种主要方法。首先,开发了“单任务施工机器人”,通过执行诸如油漆、抹灰和铺陶瓷砖等非常具体的任务来取代施工现场的工人。其次,通过“施工自动化系统”进一步改进机器人系统,该系统旨在通过协调由单任务施工机器人支持的各种子系统实现全面自动化。这两个概念的主要重点是预制建筑部件的现场自动组装。尽管如此,整个机器人过程仍然是通常复杂的人类工作链的复制,而且对预制部件的依赖也带来了自身的缺点,例如需要为标准化(单调)元素建立专门的场外生产网络 [4]。在这一点上,增材制造 (AM) 方法有一些互补的方面和支持建筑自动化的潜力,因为它可以让机器人直接从原材料中高效地生产定制的建筑部件 [5]。AM 技术最初出现在 20 世纪 80 年代 [6]。Charles Hull [7] 开发了第一台 AM 机器,称为立体光刻,以替代注塑成型技术(一种成型制造方法),他使用后者来制造金属零件。这种成型技术成本高昂,耗时长,因为需要为每个不同的部件制作一个新模具 [8] 。他的新系统依靠紫外线敏感流体的自动凝固,通过以下方式形成 3D 物体
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,