混合谱系白血病基因 MLL1 的染色体重排是婴儿急性白血病的标志。粒细胞-巨噬细胞祖细胞状态构成了粒单核细胞白血病干性和 MLL 型癌蛋白转化的表观遗传基础。此前,研究表明,小鼠粒单核细胞 MLL - ENL 转化的建立(而非其维持)依赖于转录因子 C/EBP α,这表明 MLL 驱动的致癌作用存在表观遗传命中和逃逸机制。在这里,我们证明 Cebpa / Cebpb 的化合物缺失几乎完全消除了 MLL - ENL 转化细胞的生长和存活。从化合物 Cebpa / Cebpb 缺失中恢复了罕见、生长缓慢且易凋亡的 MLL - ENL 转化逃逸者。逃逸者均具有高表达常驻 Cebpe 基因的特征,表明 C/EBP ε 对 C/EBP α /C/ EBP β 缺陷的功能补偿较差。异位 C/EBP β 表达和下游激活 IGF1 增强了补充作用,从而促进了生长。Cebpe 基因失活仅在存在补充 C/EBP β 的情况下完成,不存在补充 C/EBP β 时则不会完成,这证实了 Cebpa / Cebpb 双敲除对 Cebpe 的依赖性。我们的数据显示,MLL 转化的髓系细胞在转化的启动和维持过程中依赖于 C/EBP。
.................................................................................................................................................... 61 图 24 DLM 估计的时间序列中每个种群的估计趋势。 ... 62 图 25. 在夏季在参考点进行的浮潜调查中,每 5 公里成年夏季钢头鳟的年峰值数量。参考点位于奥林匹克国家公园的六条河流中,X 轴的标签报告了每年重复调查的次数 n。计数包括自然和孵化场来源的成年鳟鱼(见表 5)。详情请参阅 Brenkman 和 Connolly (2008)。 ............................................................................................................. 64 图 26. 在连续浮潜调查中计数的成年夏季钢头鳟的分布和相对丰度(见表 6)。成年钢头鳟的纵向剖面以 1 公里的空间尺度绘制,以箱长表示。 ........................................................................................... 68 图 27. 估计冬季径流种群的 15 年逃逸趋势(切断后总逃逸量)。点显示估计的随时间变化的趋势和个别种群的 95% 置信区间。15 年窗口的结束时间是 x 轴上的年份。仅显示至少有 2 个观测值(数据点)位于前 5 年且有 2 个观测值位于后 5 年的 15 年窗口。请注意,海峡 JF 组中的种群要小得多(图 22)。 ........................................................................................................................................... 70 图 28. 估计的 Busby(1977-1994 年)和后 Busby(1995-2022 年)时期的冬季径流种群的逃逸趋势(切断后总逃逸量)。点显示估计的趋势和 95% 置信区间。 ........................................................................................................................... 72 图 29. 冬季径流库存的 15 年平均逃逸量估算值(截断后的总逃逸量)。各点显示截至 x 轴年份的 15 年期间各个库存的估计平均值。仅显示至少有 2 年在前 5 年、2 年在后 5 年的 15 年窗口。x 轴上的年份是 15 年期的结束年份。 ........................................................................................................................... 74 图 30. 冬季径流库存的平均逃逸量估算值(3 月 15 日截断后的总逃逸量),前期(1989-1993 年)和后期(2018-2023 年)。请注意,y 轴为 log10 刻度。 ........................................................................................................................... 75 图 31.联合管理者报告的自然(3 月捕捞期后逃逸)冬季洄游鲑鱼的捕捞死亡率。这是捕捞量/捕捞量。娱乐性钓鱼(捕获和释放)死亡率仅包含在霍河数据中。...................................................................................... 78 图 32. 有捕捞和无捕捞期间 OP 鲑鱼海峡种群增长的一年估计值。估计值来自 DLM 输出。垂直线显示平均值和 95% 置信区间。............................................................................................................. 80 图 33. 有捕捞和无捕捞期间 OP 鲑鱼海峡种群的种群增长率。估计值来自 DLM 输出。垂直线显示平均值和 95% 置信区间。............................................................................................................. 81 图 34. 联合管理者报告的自然(3 月捕捞期后)冬季洄游鲑鱼逃逸和捕捞的原始数据。 ........................................................................................................... 83 图 35. 估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。 ............................................................................................................................................. 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(摘自 Moore 1960 年)。 ............................................................................................................................................. 88估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。...................................................................................................................................................... 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(来自 Moore 1960)。...................................................................................................................................................... 88估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。...................................................................................................................................................... 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(来自 Moore 1960)。...................................................................................................................................................... 88
背景:免疫逃逸是癌症的一个基本特征。在肿瘤发展的早期阶段,肿瘤必须实施免疫逃逸策略来防止宿主免疫系统的攻击。阻断肿瘤的免疫逃逸将重新激活宿主免疫系统来消灭肿瘤。应用抗 PD-1/PD-L1 或抗 CTLA4 治疗的免疫检查点疗法 (ICT) 在过去几年中取得了显著的成功。然而,由于肿瘤免疫系统的复杂性,约 70% 的患者无法从 ICT 治疗中获得任何临床益处。过去,人们认为种系致病变异对癌症的遗传贡献很小。结果:新兴证据表明,种系基因组通过编码宿主免疫系统对癌症发挥显性遗传贡献。免疫系统的功能成分由宿主基因组编码,因此种系基因组可能对癌症免疫逃逸和免疫治疗反应产生深远影响。事实上,最近的研究表明,种系致病变异可以通过 (i) 塑造肿瘤体细胞突变、改变甲基化模式和抗原呈递能力或 (ii) 影响 NK 细胞调节肿瘤微环境中淋巴细胞滤过的功能,在群体水平上影响癌症患者的免疫能力。此外,HLA(A、B 或 C 型)基因型也会影响肿瘤体细胞突变的格局。结论:这些结果强调了种系基因组在免疫和癌症发展中不可或缺的作用,并表明应将种系基因组学整合到癌症生物学和癌症免疫治疗的研究领域中。
摘要基于基因型的抗生素耐药性诊断方法代表了经验疗法的一种有前途的替代方法,可减少不适当的抗生素使用。然而,由于此类检测是根据已知的遗传标记推断耐药性,因此随着新耐药性的出现,它们的实用性将减弱。因此,维持这些诊断方法将需要监测以确保及早发现新的耐药变异,但有效的策略仍未确定。我们评估了根据患者和病原体特征而制定的有针对性的采样方法在检测淋病奈瑟菌的抗生素耐药性和诊断逃逸变异方面的效率,淋病奈瑟菌是一种与高疾病负担和抗生素耐药性相关的病原体,以及基于基因型的诊断的发展有关。我们表明,根据患者特征而制定的采样并不是有效检测变异的可靠策略。相反,根据病原体特征(如基因组多样性和基因组背景)而制定的采样在识别与耐药性和诊断逃逸相关的遗传变异方面明显比随机采样更有效。
我们研究的初始背景是一个有限、连通、无向图 G 。一个粒子在 G 的顶点上随机移动,我们希望使用非标准技术了解这种随机游动的一些行为。我们努力的核心问题是:给定两个状态 x 和 y ,从 x 到 y 的游动有多“困难”?我们将通过将 G 视为电网络来形式化“困难”中有效电阻的含义。使用有效电阻的概念,我们将以两种不同的方式来回答我们的问题:首先是根据逃逸概率(命题 4.2),然后是根据通勤时间(定理 6.9)。最后,波利亚递归定理(定理 7.12)将形式化以下概念:在 1 维和 2 维中,简单随机游动若不先返回原点,则“无限困难”地“逃逸”到无穷大,但在 3 维及更高维度中,则“有限困难”。我们希望在回答核心问题时,能够说明分析具有电网络的随机游动如何具有启发性、物理直观性以及计算实用性。
摘要:转移性黑色素瘤是一种高度免疫原性的肿瘤,由于免疫系统逃逸机制,其存活率极低。针对细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA4) 和程序性死亡-1 (PD1) 受体的免疫检查点抑制剂 (ICI) 被用于阻止免疫逃逸。这种免疫疗法可提高总体存活率。然而,黑色素瘤细胞以逃避分子机制作出反应。ERK 级联抑制剂也用于转移性黑色素瘤治疗,其中 RAF 活性阻断是此类治疗的主要治疗方法,与 MEK 抑制剂联合使用可改善许多临床疗效参数。尽管它们在抑制 ERK 信号传导方面有效,但黑色素瘤细胞信号的重新连接会导致疾病复发,从而导致 ERK 激活的恢复,这是一些耐药机制的常见原因。最近的研究表明,RAS–ERK 通路抑制剂与 ICI 疗法相结合对转移性黑色素瘤治疗具有良好的优势。本文,我们重新整理了在患者身上进行临床评估的联合疗法。
火星的水历史是理解类似地球的行星进化的基础。水作为原子逸出到空间,氢原子的逃逸速度比氘升高,使剩余的D/H比增加了。目前的比率反映了火星总损失。观察火星大气和挥发性进化(Maven)和哈勃太空望远镜(HST)航天器可为H和D提供原子密度,并为H和D的逃生速率。在观察到的每个火星年份附近的大幅增长都与水蒸气的强烈上升相稳定。 短期变化还需要进行热逃逸之外的过程,这可能来自大气动力学和超热原子。 包括从热原子中逃脱的,H和D迅速逃脱,逃生通量受到较低大气的重新调整的限制。 在此范式中,逃脱了水,逃脱原子的D/H比由上升的水蒸气和大气动力学来确定,而不是原子逃生的具体细节。观察火星大气和挥发性进化(Maven)和哈勃太空望远镜(HST)航天器可为H和D提供原子密度,并为H和D的逃生速率。在观察到的每个火星年份附近的大幅增长都与水蒸气的强烈上升相稳定。短期变化还需要进行热逃逸之外的过程,这可能来自大气动力学和超热原子。包括从热原子中逃脱的,H和D迅速逃脱,逃生通量受到较低大气的重新调整的限制。在此范式中,逃脱了水,逃脱原子的D/H比由上升的水蒸气和大气动力学来确定,而不是原子逃生的具体细节。
抗原变异是炎症或SARS-COV-2等RNA病毒的主要免疫逃逸机制。高突变率促进了抗原逃逸,但它们也会引起大型突变载荷和降低。目前尚不清楚这种成本 - 拟合权衡如何选择病毒的突变率。使用波动波模型在有限人群中使用病毒和宿主免疫系统的共进化,我们研究免疫如何影响突变率和其他非抗原性状(例如毒力)的进化。我们首先表明波的性质取决于交叉反应性免疫系统的方式,并调和了先前的方法。免疫病毒系统在低交叉反应性下的行为就像Fisher波一样,并且在高交叉反应性下的耐度波。这些制度预测了非抗原性状进化的不同结果。在低跨反应性下,进化稳定的策略是最大化波的速度,这意味着更高的突变速率和增加的毒力。在大型交叉反应性上,我们的估计将H3N2插入式含量,稳定的策略是增加基本的生殖数量,将突变率保持在最低和毒力较低。
育空地区秋季鲑鱼渔业的管理符合育空河流域秋季大马哈鱼管理计划 (5 AAC 01.249)。该计划要求,当预计的产量规模低于 300,000 条大马哈鱼时,所有自给性、个人使用、运动和商业目的的大马哈鱼渔业都应关闭。如果预计能够实现整个流域或个别的逃逸目标,则可以开放自给性大马哈鱼渔业。该计划还要求产量规模至少为 550,000 条大马哈鱼,以便对超过该水平的剩余鱼进行定向商业捕捞。美国有三个秋季大马哈鱼的逃逸目标:整个育空河流域(300,000-600,000 条)、蒂德里因吉克河(85,000-234,000 条)和三角河(7,000-20,000 条),以及两个加拿大条约目标;育空河主干流(70,000–104,000 加上收获份额)位于加拿大边境的鹰河附近,而渔支河(22,000–49,000)位于波丘派恩河流域的加拿大部分。
摘要 目的 抗肿瘤坏死因子 (TNF) 药物会削弱接种 SARS-CoV-2 疫苗后的血清学反应。我们试图评估第三剂信使 RNA (mRNA) 疫苗是否能显著增强接受英夫利昔单抗治疗的 IBD 患者的抗 SARS-CoV-2 抗体反应和保护性免疫。设计 在生物疗法对 SARS-CoV-2 感染和免疫的影响 (CLARITY) IBD 研究中,比较了接受英夫利昔单抗治疗的 IBD 患者中第三剂疫苗诱导的抗 SARS-CoV-2 刺突 (抗 S) 受体结合域 (RBD) 抗体反应、突破性 SARS-CoV-2 感染、再感染和持续性口咽携带者与接受维多珠单抗治疗的参考队列。结果 接种第三剂 mRNA 疫苗后,两组的抗 S RBD 抗体浓度几何平均数 (SD) 均增加。然而,无论前两剂基础疫苗是 ChAdOx1 nCoV-19(1856 U/mL (5.2) vs 10 728 U/mL (3.1), p<0.0001)还是 BNT162b2 疫苗(2164 U/mL (4.1) vs 15 116 U/mL (3.4), p<0.0001),接受英夫利昔单抗治疗的患者的抗体浓度均低于接受维多珠单抗治疗的患者的抗体浓度。然而,无论接受何种基础疫苗组合,在第三剂和第四剂 mRNA 疫苗接种后,抗 S RBD 抗体浓度均无差异。接种第三剂疫苗后,接受英夫利昔单抗治疗的患者的抗 S RBD 抗体半衰期估计值短于接受维多珠单抗治疗的患者(37.0 天(95% CI 35.6 至 38.6)vs 52.0 天(95% CI 49.0 至 55.4),p<0.0001)。与接受维多珠单抗治疗的患者相比,接受英夫利昔单抗治疗的患者更有可能出现 SARS-CoV-2 突破性感染(HR 2.23(95% CI 1.46 至 3.38),p=0.00018)和再感染(HR 2.10(95% CI 1.31 至 3.35),p=0.0019),但这种影响与第三剂疫苗抗 S RBD 抗体浓度无关。再感染主要发生在 Omicron 浪潮期间,并由 SARS-CoV-2