脂质纳米粒子 (LNP) 广泛用于 mRNA 递送,阳离子脂质极大地影响生物分布、细胞摄取、内体逃逸和转染效率。然而,阳离子脂质的费力合成限制了有效候选物的发现并减慢了规模化生产。在这里,我们开发了一种基于合理设计的胺-硫醇-丙烯酸酯结合的一锅串联多组分反应,该反应能够快速(1 小时)且轻松地在室温下合成酰胺结合可降解 (AID) 脂质。对 100 种化学性质不同的 AID 脂质组合库进行结构-活性关系分析,鉴定出一种通常可提供有效脂质的尾状胺环烷基苯胺。实验和理论研究表明,嵌入的大苯环可以使脂质呈现更圆锥形,从而增强内体逃逸和 mRNA 递送。领先的 AID-脂质不仅可以介导 mRNA 疫苗的局部递送和 mRNA 治疗剂的全身递送,还可以改变肝嗜性 LNP 的趋向性,从而选择性地将基因编辑器递送到肺部,将 mRNA 疫苗递送到脾脏。
摘要:基因治疗涉及将外源遗传物质引入宿主组织中,以修饰基因表达或细胞特性以进行治疗。最初开发的是为了解决遗传疾病,基因疗法已扩展到涵盖了广泛的疾病,尤其是癌症。有效地将核酸递送到靶细胞中取决于载体,与病毒载体相比,非病毒系统由于其安全性的增强而变得突出。壳聚糖是一种生物聚合物,经常用于为各种生物医学应用,尤其是核酸递送的纳米颗粒制造纳米颗粒,最近强调靶向癌细胞。壳聚糖的带电的氨基基团可以与核酸形成稳定的纳米复膜,并促进与细胞膜的相互作用,从而促进细胞摄取。尽管有这些优点,但基于壳聚糖的纳米颗粒面临诸如生理pH值差的溶解度,癌细胞的非特异性溶解度以及效率低下的内体逃逸,从而限制了其转染效率。为了解决这些局限性,研究人员专注于增强壳聚糖纳米颗粒的功能。策略包括提高稳定性,提高靶向特异性,促进细胞摄取效率以及促进内体逃逸。本综述对这些类别中的最新表述方法进行了批判性评估,旨在提供有关推进基于壳聚糖的基因递送系统的见解,以提高疗效,尤其是在癌症治疗方面。
第五代触摸屏地面站 (STANAG 4586),具有全自动和半自动导航模式 数据链网络攻击弹性,高清数字数据 使用跟踪天线时操作半径可达 80 公里 长时间停留目标(最长 16 小时,取决于任务) 降落伞和安全气囊着陆配置 可选回收系统,用于在敌对和海洋环境中进行精确自动回收 快速部署和多重安全控制 自供电、独立于逃逸、低物流足迹的气动发射器
第二种选择是基于结果的标准(即规定基于结果的控制的标准)。这些控制规定了必须实现的结果,例如“必须设计、建造、管理和维护封闭设施以防止新生物逃逸”,但允许设施运营商选择如何实现这一目标。将发布几份指南,概述如何有效实现这些结果。基于结果的控制的潜在好处是,它们允许研究人员在其封闭设施中使用控制措施,相对于规定性控制,这些措施可能更适合特定的生物和相关研究。
与正在进行的I期试验(NCT03784625)相符的摘要,该试验专门针对黑色素瘤靶向放射性核素治疗(TRT),我们探索了免疫系统与黑色素配体[131 I] ICF01012单独或与免疫治疗疗法合并的相互作用(ICF01012)。在这里我们证明[131 I] ICF01012诱导免疫原性死亡,其特征是细胞表面暴露的膜联蛋白A1和钙网蛋白的显着增加。与免疫功能低下相比,[131 I] ICF01012增加了免疫能力小鼠的存活率(29 vs. 24天,p = 0.0374)。流式细胞仪和RT-QPCR分析强调[131 I] ICF01012诱导肿瘤微环境中的适应性和先天免疫细胞募集。[131 I] ICF01012与ICI(抗CTLA-4,抗PD-1,抗PD-L1)的组合表明,公差是一种主要的免疫逃逸机制,而TRT后不存在疲劳。此外,与单独使用TRT相比,[131 I] ICF01012和ICI组合有系统地导致生存率延长(P <0.0001)。具体而言,[131 I] ICF01012 +抗CTLA-4组合与单独的抗CTLA-4相比显着提高生存率(41 vs. 26天; P = 0.0011),而没有毒性。这项工作代表了TRT诱导的抗肿瘤免疫反应修饰的首个全局表征,表明耐受性是一种主要的免疫逃逸机制,而将TRT和ICI结合在一起是有希望的。
背景:在所有癌症中,肺癌的死亡率最高,免疫疗法经常会导致耐药性。了解肺癌患者免疫逃生背后的分子机制并开发了预测性和治疗靶标,我们使用单细胞测序进行了分析实验。方法:我们从八名肺腺癌患者中收集了八个肿瘤组织样品,并根据程序性细胞死亡配体1(PD-L1)表达水平的阳性反应对它们进行了分类。单细胞测序分析用于创建全面的细胞景观。均匀的歧管近似和投影用于显示免疫和内皮细胞的比例,以及描述不同细胞类型的分布的地图。细胞细分;根据PD-L1水平和肿瘤标记阳性反应对亚群体进行分组。探索了PD-L1反应的发生与免疫细胞的反应时间之间的相关性;两组之间的差异基因表达被阐明。最后,使用定量聚合酶链反应(QPCR)检查关键表达的基因与PD-L1免疫逃逸检查点响应之间的关系。结果:总共分析了58,810个单细胞,确定了七种不同的细胞类型。在PD-L1阳性样品组中,B细胞,星形胶质细胞,内皮细胞,外皮细胞和组织干细胞的比例较高,而T和Dendritic细胞是PD-L1阴性样品组中的主要细胞。根据分子标记,将七种细胞类型分为17个细胞簇,一个簇归类为肿瘤细胞,显示PD-L1阳性。同时筛选具有不同表达水平的11个分子标记物(NAPSA,MUC1,WFDC2,MyO6,Lyz,IgHG4,IglG4,Igll5,IglM5,IGHM,IGKC,AQP3和IGFBP7),以及与PD-L1/PD-L1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1免疫响应的关联。结论:我们的研究表明,PD-L1介导的免疫逃逸可能发生在肿瘤进展的后期,涉及PD-L1阳性和阴性免疫细胞。此外,我们确定了11种差异表达的基因,可以提供有关肺癌患者免疫逃生的潜在机制的见解。这些发现提供了有希望的分子靶标,用于检测和治疗临床环境中的免疫逃逸。
异常激活的激酶信号通路驱动髓母细胞瘤 (MB) 的侵袭和播散。大多数促肿瘤激酶信号通路都参与丝裂原活化蛋白激酶 (MAPK) 细胞外调节激酶 (ERK1/2) 通路。MB 细胞侵袭过程中 ERK1/2 的激活状态尚不清楚,其在侵袭控制中的作用尚不清楚。我们为 MB 细胞中的 MAPK ERK1/2 通路建立了一种合成激酶活化重定位传感器 (SKARS),用于实时测量药物反应。我们使用 3D 侵袭试验和器官型小脑切片培养来测试生理相关组织环境中的药物效果。我们发现肝细胞生长因子 (HGF)、表皮生长因子 (EGF) 或碱性成纤维细胞生长因子 (bFGF) 导致 MB 细胞中核 ERK1/2 快速激活,这种激活持续数小时。与 BCR/ABL 激酶抑制剂达沙替尼同时治疗可完全抑制由 HGF 和 EGF 诱导的核 ERK1/2 活性,但不能抑制由 bFGF 诱导的核 ERK1/2 活性。核 ERK1/2 活性增加与侵袭速度呈正相关。达沙替尼阻断了大多数细胞中的 ERK 相关侵袭,但我们也观察到 ERK1/2 活性低的快速侵袭细胞。这些 ERK1/2 低、快速移动的细胞呈现圆形形态,而 ERK 高、快速移动的细胞呈现间充质形态。达沙替尼有效阻断了 EGF 诱导的增殖,但仅适度抑制组织侵袭,这表明一部分细胞可能通过非间充质运动逃避达沙替尼的侵袭抑制。因此,生长因子诱导的 ERK1/2 核活化与 MB 细胞中的间充质运动和增殖有关,并且可以通过 BCR/ABL 激酶抑制剂达沙替尼阻断。
基因治疗是一种通过关闭致病或功能失调的基因并将特定基因传递到体内来治疗疾病的治疗方法。将治疗基因传递到目标细胞仍然是基因转移的一个限制。因此,基因转移是基因治疗的重要组成部分。基因传递系统通常分为基于病毒和非基于病毒的系统。在众多纳米结构中,纳米粒子被广泛用作非病毒基因转移的载体。磁性纳米粒子 (MNP) 近年来因其独特的磁性而被广泛应用于生物医学领域。原则上,它们的电荷和尺寸使 MNP 适合到达目标位置。此外,高表面积/体积比使 MNP 成为基因转移的理想选择。使用 MNP 进行基因转移的主要方法之一是磁转染。在这种方法中,DNA 和 MNP 在含盐的缓冲液中结合形成一种称为磁转染的复合物。这种复合物可以在磁场的影响下穿透细胞。带负电荷的 DNA 需要经过修饰才能穿过带负电荷的细胞膜,与 MNP 形成复合物,并增加其稳定性和生物相容性。为此,常用的聚合物如 PEI(例如两亲性聚(L-赖氨酸)、聚酰胺胺 (PAA) 和 PEG)用作基因载体。此外,MNP 和 PEI 等聚合物有助于 DNA 的内体逃逸。这篇小型综述总结了磁性粒子在基因转移的所有动态过程(纳米粒子合成、基因结合、细胞摄取、内体逃逸和体内靶向)中的特定基因转染(磁转染)。
目的:为突破各级生物屏障,提高siRNA的递送效率,通过组氨酸、胆固醇修饰的羧甲基壳聚糖与抗EGFR抗体(CHCE)自组装,制备了一种多功能siRNA递送系统(CHCE/siRNA纳米粒)。方法:通过动态光散射和扫描电镜检测CHCE/siRNA NPs的形貌;体外通过流式细胞术和共聚焦激光扫描显微镜评估其肿瘤靶向性、细胞摄取和内体逃逸能力,证实了CHCE/siRNA NPs的基因沉默和细胞杀伤能力;体内通过IVIS成像系统检测CHCE/siRNA NPs的生物分布,并证实了NPs在裸鼠肿瘤模型中的治疗效果。结果:CHCE/siRNA NPs呈纳米球形,粒径分布窄。体外实验中,CHCE/siRNA NPs 兼具肿瘤靶向性和 pH 响应性的双重功能,能够促进细胞结合、细胞摄取和内体逃逸,可有效沉默血管内皮生长因子 A (VEGFA),引起细胞凋亡并抑制增殖。体内实验中,CHCE/siRNA NPs 可靶向肿瘤部位,敲低 VEGFA,达到更好的抗肿瘤效果。结论:成功制备了一种兼具肿瘤靶向性和 pH 响应性的新型 siRNA 递送系统,该系统可突破生物学屏障,深入肿瘤,达到更好的肿瘤治疗效果,为 siRNA 提供了一种新的理想递送平台。关键词:多功能羧甲基壳聚糖,靶向递送,内体逃逸,基因沉默,抗肿瘤治疗