无线系统不断增长的设备和容量需求带来了对RF光谱的需求不断增长。COG-NISTILE RADIO(CR)系统是提高频谱效率的新兴概念。CR系统旨在实现其主要许可用户在Spectrum Overlay方法中未占用的RF频段的机会性使用。这种方法在信号和图像处理中尤其重要,其中大型和异质的传感器集提供了大量数据,通常会嘈杂且损坏了各种干扰来源。从方法论的角度来看,认知通知与多维和统计信号处理有关,尤其是诸如检测,估计和优化等问题。除了经典的传感,检测,监督,增强和学习方法外,还包括贝叶斯建模,马尔可夫模型,支持向量机和内核方法。它跨越了广泛的应用领域,例如军事,工业,医疗,运输和其他领域,例如误差控制,错误检测,适应性过滤,计算机视觉,管理数据,数据控制,传感器控制,数据融合,盲目和半盲源分离,稀疏分析,脑部分析,脑部计算机
在当今的量子通信中,主要问题之一是缺乏可以同时确保高率和长距离的量子中继器设计。最近的文献已经建立了端到端能力,这些容量是通过量子网络中量子和私人通信的最一般协议可以实现的,其中包括量子中继器链的情况。但是,是否存在实现这种能力的物理设计仍然是一个具有挑战性的目标。在这种动机的驱动下,在这项工作中,我们为连续可变的量子中继器提出了设计,并表明它实际上可以实现这一壮举。我们还表明,即使在嘈杂的政权中,我们的费率也超过了Pirandola-Laurenza-ottaviani-Banchi(PLOB)结合。使用无噪声线性放大器,量子记忆和连续变化的钟形测量值,我们的中继器设置是开发出来的。,我们为我们在设计中使用的连续变量量子记忆的非理想模型提出了一个非理想模型。然后,我们表明,如果使用量子链路太嘈杂和/或低质量的量子记忆和放大器,那么潜在的量子通信率将偏离理论能力。
波束成形是使用具有高增益的定向窄波束,通过天线阵列将功率集中在最小的角度范围内进行发射和接收。它提供更好的覆盖范围和吞吐量、更高的信干噪比 (SINR),并且可用于跟踪用户。全息波束成形是一种利用软件定义天线 (SDA) 的先进波束成形方法。全息是指使用全息图通过天线实现波束控制,其中天线就像光学全息图中的全息板;来自无线电的射频信号流入天线的背面并散射到其正面,其中微小元件调整波束的形状和方向,如图 3 所示。与传统的相控阵或 MIMO 系统相比,SDA 更便宜、更小、更轻、功耗更低 [34]。由于 C-SWaP(成本、尺寸、重量和功率)被视为任何通信系统设计的主要挑战,因此在 HBF 中使用 SDA 将实现 6G 中灵活、高效的发送和接收。
通讯作者的电子邮件:rizwana@uitm.edu.my摘要如今,数字通信已成为我们日常生活的重要组成部分,自从Covid-19-19-19pemic爆发以来,这变得更加普遍。为了确保其市场的可持续性和相关性,大多数组织必须在日常运营中适应甚至加速数字通信的实施。但是,并非所有组织都能以与其他组织相同的速度跟上。因此,该概念文件旨在识别和分析数字通信的局限性以及为组织的风险缓解策略。这些发现强调了为组织研究风险缓解策略的重要性。数字沟通有五个局限性,是(1)通过道德沟通的道德规范可能会提高业务绩效并最大程度地减少风险(2)保留传统沟通方法可能会因社交媒体渠道的可用性(3)的组织和个人准备和能力而在数字沟通中的个人准备和能力而改变,而数字沟通能够实现组织的效率(4)数字沟通的效率(4)诸如实现现实的效率(4)实现现实的效率(4)实现现实(4)实现现实(4)实现现实(4)的现实(4)实现现实(4),这将实现现实(4)实现现实(4)的现实(4),而现实(4)实现了现实(4)的效率(4)法规对鼓励数字创新和新技术有重大影响。这项研究的重点是数字通信所需的关键治理要素,这些沟通本质上是定性的,难以衡量。即使在先前的研究中使用了定量方法,但仍需要进行全球经验研究来概括发现。本文通过进行基于理论的研究来帮助组织强调研究风险缓解策略的重要性,从而增加了有关数字通信局限性的有限文献。关键字:数字沟通,道德,政府规则,传统综合性,准备就绪。
摘要:新能源系统中的锂电池工作在野外环境下,其数据远程监控往往基于无线通信实现,而这种传输方式需要设立专属基站,成本较高。而通用分组无线业务(GPRS)短消息通信则通过卫星实现数据传输,无需设立基站。基于以上情况,设计了一种基于GPRS短消息通信的锂电池监控系统,系统由监控终端、GPRS接收机、远程监控云平台组成。针对数据采集、数据监控、GPRS短消息通信的软硬件需求,给出了相应的设计思路和实施方案。同时,考虑到野外环境对卫星通信的影响,提出了基于数据备份的传输差错控制方法,提高其传输可靠性。最后通过实际测试,验证了该系统能够有效传输监测数据并定位锂电池,维护人员可以通过云平台实时监控数据,降低远程监控的建设和维护成本。
随着理论和应用技术的进步,基于经典加密的通信系统受到量子计算和分布式计算的严重威胁。为了抵御安全威胁,一种将机密信息直接加载到量子态上的通信方法——量子安全直接通信(QSDC)应运而生。本文报告了第一个连续变量QSDC(CV-QSDC)实验演示,以验证基于高斯映射的CV-QSDC协议的可行性和有效性,并提出了一种实际信道下信号分类的参数估计。在我们的实验中,我们提供了4×10 2 个块,每个块包含10 5 个数据用于直接信息传输。对于我们实验中5 km的传输距离,过剩噪声为0.0035 SNU,其中SNU表示散粒噪声单位。4.08×10 5 bit/s的实验结果有力地证明了光纤信道下CV-QSDC的可行性。提出的基于参数估计的等级判断方法为实际光纤通道中的CV-QSDC提供了一种实用、可用的消息处理方案,为等级协调奠定了基础。
通过使用偏振纠缠光子对,可以实现物理上防篡改的通信。从源头开始,纠缠对中的一个光子被发送给一个通信伙伴,第二个光子被发送给另一个通信伙伴。在某一点的拦截或操纵会导致两个光子的状态同时改变。这种变化表明第三方正试图非法获取信息,并能够立即做出反应。
量子状态的相干叠加是量子信息处理的重要资源,它将量子动力学和信息与经典对应物区分开。在本文中,我们确定了在宽泛的环境中传达量子信息的相干要求,包括受监视的Quanth Quanth动力学和量子误差校正代码。我们通过考虑由两个对手Alice和Eve之间玩过的量子信息游戏生成的混合电路来确定这些要求,Alice和Eve之间通过对固定数量的量子台进行应用和调查来竞争。Alice应用单位人员试图维持量子通道的容量,而EVE则应用测量方法来摧毁它。通过限制每个对立面可用的连贯性生成或破坏操作,我们确定了爱丽丝的连贯要求。当爱丽丝扮演旨在模仿通用监测量子动态的随机策略时,我们会发现纠缠和量子通道容量中的相干相变。然后,我们得出一个定理,给出了爱丽丝在任何成功策略中要求的最小相干性,并通过证明连贯性在任何stabelizer量子误差校正代码中的代码距离上设置了上限。这样的界限提供了对量子通信和误差校正的相干资源要求的严格量化。
根据UITP世界地铁图2021报告,在2018年初至2020年底之间进行了大约3,300公里的新铁路基础设施。在这段时间内,全球运营的车队增加了28,000辆,总共140,000辆汽车。在2019年,全球平均每天有1.9亿乘客。铁路运营商一直在努力使火车安全行驶,为骑手提供优质和可靠的服务,并降低其运营成本。在1980年代中期引入了一种现代的铁路信号系统,称为“基于通信的火车控制(CBTC)”,目的是在保持安全要求的同时实现最大容量。2023年10月23日,运输安全局(TSA)更新了网络安全指令 - 增强铁路网络安全 - SD 1580/82-2022-01,通过实施分层的网络安全度量,以降低风险危险性,以降低型号的行为,以调节乘客和货运铁路运营商,以降低型号的电视措施。
经典计算机信息基于简单的开/关读数。使用一种称为中继器的技术来放大和长距离重新传输这些信息很简单。量子信息基于相对更复杂和安全的读数,例如光子极化和电子自旋。被称为量子点的半导体纳米盒是研究人员提出的用于存储和传输量子信息的材料。然而,量子中继器技术有一些局限性——例如,目前将基于光子的信息转换为基于电子的信息的方法效率极低。大阪大学的研究人员旨在解决这一信息转换和传输难题。