摘要 — CubeSat 平台由于成本低廉且发射相对容易,在空间科学应用中的应用越来越广泛。它正在成为低地球轨道 (LEO) 及更远轨道上的关键科学发现工具,包括地球同步赤道轨道 (GEO)、拉格朗日点、月球任务等。这些任务及其科学目标的复杂性日益增加,必须得到通信技术同等进步的支持。每年都需要更高的数据速率和更高的可靠性。然而,CubeSat 平台的尺寸、重量和功率 (SWaP) 约束的减小给卫星通信领域带来了独特的挑战。目前缺乏专门针对 CubeSat 平台的通信设备。缺乏标准化、经过测试的设备会延长开发时间并降低任务信心。此外,使用 CubeSat 平台的任务通常会受到更困难的设计约束。天线的位置、尺寸和指向通常服从于有效载荷仪器和任务目标的要求。传统的链路裕度估计技术在这些情况下是不够的,因为它们强调最坏的情况。实际上,即使在一次通过过程中,实际链路参数也可能有很大差异。这为预测通信性能和安排地面站联系带来了新的挑战,但也为提高效率带来了新的机会。本文介绍了与 Vulcan Wireless, Inc. 合作为 CubeSat 平台设计的新型软件定义无线电 (SDR) 的集成、测试和验证过程。SDR 计划用于 NASA 戈达德太空飞行中心 (GSFC) 即将进行的 5 项 CubeSat 任务,包括地球同步转移轨道 (GTO) 任务,它还可以作为未来任务的标准和经过充分测试的选项,实现标准化、快速和低成本的 CubeSat 通信系统网络集成过程。已经开发了详细的模拟来估计这些任务的通信性能,采用了独特的天线位置和姿态行为
摘要——本文对自由空间光通信系统进行了全面分析。自由空间光通信系统是一种现代化技术,其中表面环境充当发射器和接收器之间的传输介质,为了成功传输光信号,源和目的地都应该在 LOS 中。作为通道的外部环境可以是任何外层空间,可以是真空或适度的空气。FSO 系统通过未授权频段光通信频谱提供有吸引力的带宽增强。FSO 系统中的传输和接收主要依赖于外部通道,即外部环境,因为存在雨(小雨、中雨、大雨)、雾、雪等外部因素。FSO 链路的可靠性在很大程度上取决于外部或表面天气条件,这些条件会衰减在自由空间中传播的光信号强度。随着恶劣天气条件的加剧或加剧,光信号的强度会减弱。对于众多源,可以使用波长多路复用器将各种波长的光信号组合成单个源,同样,在目的地,可以使用波长解复用器分离组合波长的光信号。影响传输系统的其他方面可能包括特定波长或特定波段的光源类型、调制格式、要发送的数据量、使用的光电探测器类型等。特定波长上要传输的数据量以 Mbps 或 Gbps 为单位。这项研究主要侧重于各种天气条件,这些条件在 FSO 系统中起到了障碍作用。天气条件和数据量相结合是决定光信号从发射器到接收器的传输距离的主要考虑因素。通过优化 FSO 系统,它通过降低输出信号中的误码率 (BER) 来最大化源和目的地之间的距离。FSO 系统的最终结论可以通过 Q 因子(即信号质量)和使用眼图分析仪分析眼图来检查。
本论文由 Marshall Digital Scholar 免费提供给您,供您开放访问。它已被 Marshall Digital Scholar 的授权管理员接受,可纳入论文、学位论文和毕业论文中。如需更多信息,请联系 zhangj@marshall.edu、beachgr@marshall.edu。
1摘要:本文介绍了一种新颖的物联网(IoT)启用方法,以优化运营成本并增强网络可靠性,并将多载体能量枢纽(EH)中的不确定性效果和能源管理结合使用,并具有可再生资源的综合能源系统(IES),并使用可再生资源,结合热量和电源(CHP)和插入式水电电动汽车(PHEV)。在拟议的模型中,多能轮毂(MEH)能源不同载体的优化过程考虑了基于价格的需求响应(DR)计划,并具有MEH电气和热需求。在高峰期,能源运营商的价格是在高关税下计算的,其他电力枢纽可以帮助降低枢纽的能源成本。所提出的模型可以处理相关环境中可再生源的随机行为,并找到用于EHS中涡轮机通信的最佳解决方案。模拟结果表明,通过考虑了MEH结构,电力交换和EHS中的热涡轮机之间的依赖性,这表明了所提出的模型的高性能。关键字:多能轮毂,物联网,无意义的转换。命名法
频带 频率范围 [Hz] 与以下相关 Delta 0.5 - 4 稳态睡眠驱动 Theta 4 - 8 与稳态睡眠驱动相关 Alpha 8 - 12 放松的清醒和困倦 Beta 13 - 30 积极思考 Gamma > 30 认知状态
T.K. Paraiso,R.I。Woodward,D。G. Marangon,V。Lovic,Z.-L。 Yuan和A.J. Shields,量子通信的高级激光技术(教程评论)高级量子技术4,2100062(2021)H。K. Lo和J. Preskill,Quant。 inf。 计算。 8,431–458(2007)T.K.Paraiso,R.I。Woodward,D。G. Marangon,V。Lovic,Z.-L。 Yuan和A.J. Shields,量子通信的高级激光技术(教程评论)高级量子技术4,2100062(2021)H。K. Lo和J. Preskill,Quant。 inf。 计算。 8,431–458(2007)Paraiso,R.I。Woodward,D。G. Marangon,V。Lovic,Z.-L。 Yuan和A.J.Shields,量子通信的高级激光技术(教程评论)高级量子技术4,2100062(2021)H。K. Lo和J. Preskill,Quant。inf。计算。8,431–458(2007)
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
本文提出了一个用于纳米卫星地球观察者初步设计技术的通信系统,作为用于管理和事物区域和国家资源各个方面的有用工具。在分析中提出了一个低地球轨道纳米卫星通信系统的设计过程。在拟议的论文中已经制定并解决了下一个目标:审查地球观察系统并研究了他们的设计选项,分析了板载天线设计背景,并提供了分析估计,例如设计通行带正交正交相位移位键盘键合和接收器在Simulink中使用Siming/Mathers a Offers ofer a Offers/Mathers逐步浏览,从而获得了simul shiming/Mathers,该阶段是逐步浏览的,该阶段的偏差范围均为数学范围。研究了它们的特征,观察到并分散了图表,星座和正交相移的信号轨迹,并根据当代设计概念。因此,这允许为纳米卫星类别提供创新的通信系统设计技术。
1 .简介。。。。。。。。。。。。。。。。。。。。。。。.3 1.1 .要求语言 ...。 。 。 。 。 。 。 。 . . . . . . div> . . 4 2 . 术语 . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4 3 。 动机和用例 . . . . . . 。 。 。 。 。 。 。 。 . . . . . . div> 5 3.1 . 当今的语音通信 . . . . . . . . . div> . . . . . . 5 3.2 . 当今的数据通信 . . . . . < /div> . . . . . . . . . . . div> 6 4 . 出处和文件 . . . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . 7 5 . 适用性 . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . . . . . . . . . 8 5.1 . 进展超越最先进的技术。 . . .。。。。。。。。...... div>..4 2 .术语 ..。。。。。。。。。。。。。。。。。。。。。。。4 3 。动机和用例 ......。 。 。 。 。 。 。 。 . . . . . . div> 5 3.1 . 当今的语音通信 . . . . . . . . . div> . . . . . . 5 3.2 . 当今的数据通信 . . . . . < /div> . . . . . . . . . . . div> 6 4 . 出处和文件 . . . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . 7 5 . 适用性 . . 。 。 。 。 。 。 。 。 < /div> . . . . . .。。。。。。。。...... div>5 3.1 .当今的语音通信 ......... div>......5 3.2 .当今的数据通信 ..... < /div>........... div>6 4 .出处和文件 ....。。。。。。。。 < /div>.......7 5 .适用性 ..。。。。。。。。 < /div>...............8 5.1 .进展超越最先进的技术。...。。。。。。8 5.1.1.优先事项。。。。。。。。。。。。。。。。。。。。。8 5.1.2.安全。。。。。。。。。。。。。。。。。。。。。。8 5.1.3。高数据速率。。。。。。。。。。。。。。。。。。。9 5.2.应用程序。。。。。。。。。。。。。。。。。。。。。。。9 5.2.1.空对地多重链路。。。。。。。。。。。。。。。9 5.2.2.LDACS 的空对空扩展。。。。。。。。。。。9 5.2.3。飞行指导。。。。。。。。。。。。。。。。。。。10 5.2.4.航空公司的商务沟通。。。。。。。。。11 5.2.5。LDACS 导航。。。。。。。。。。。。。。。。。.11 6 .对 LDACS 的要求 .......................11 7 .LDACS的特点 ...................13 7.1 .LDACS子网 ...。。。。。。。。。。。。。。。。。13 7.2 。拓扑。。。。。.....................14 7.3 .LDACS 物理层 ...。。。。。。。。。。。。。。。14 7.4 。LDACS 数据链路层。。。。。。。。。。。。。。。。。。15 7.5 。LDACS 移动性。。。。。。。。。。。..........15 8 .可靠性和可用性 ............。。。。15 8.1 。第 2 层。。。。。。。。。。。。。。。。。。。。。。。。。15 8.2.超越第 2 层。。。。。。。。。。。。。。。。。。。。。18 9。协议栈。。。。。。。。。。。。。。。。。。。。。。。18 9.1.MAC 实体服务。。。。。。。。。。。。。。。。。。。19 9.2.DLS 实体服务。。。。。。。。。。。。。。。。。。。21 9.3.VI 服务。。。。。。。。。。。。。。。。。。。。。。。22 9.4.LME 服务。。。。。。。。。。。。。。。。。。。。。。22 9.5.SNP 服务。。。。。。。。。。。。。。。。。。。。。。22 10。。安全注意事项 ...................22 10.1.无线数字航空通信的原因 .......................22 10.2 .LDACS 要求 ...................23 10.3 .LDACS 的安全目标 ..............24 10.4 .LDACS 的安全功能 ............24 10.5 .产生的安全架构细节 ..。。。。。。24
捕获、对准与跟踪系统是机载激光通信的重要组成部分,是通信链路正常的前提和保障。为了解决机载环境下激光通信链路的自动跟踪问题,实现终端间光束的快速捕获、对准与跟踪。本文提出了采用步进电机作为控制伺服系统、四象限探测器作为探测单元自动跟踪的方法。脉宽调制信号控制步进电机转速,结合四象限探测器上光斑的位置分布,实现高精度光束跟踪。在此基础上进行了室内模拟实验。经过多次实验,跟踪精度优于2.5μrad,说明该系统可以应用于机载激光通信,验证了该方法对机载激光通信具有良好的自动跟踪性能。