无线通信系统提供强大的数字、双向、长距离信号传输,包括视频和数据下行链路(从无人机到地面站)以及命令上行链路(从地面站到无人机)。使用 2.4 GHz 频段,无线通信系统无需任何特殊授权即可运行,即使在最复杂和最狭窄的空间中也能保持其高质量。例如,可以在封闭的锅炉中将 Elios 飞到离地面 100 米以上的地方,飞行员可以安全地站在入口人孔旁边。由于每个用例都有自己的特殊性,我们整理了一个表格,代表标准用例和预期的信号覆盖范围。
通信。美国联邦航空管理局将从模拟语音和商业服务提供商数据链路通信过渡到集成数字通信能力。第 1 阶段的数据链路通信将随着新应用程序的测试而发展。数据链路的实施将减少语音信道拥塞并增加每个甚高频 (VHF) 频率的容量。在第 2 阶段,美国联邦航空管理局将开始用数字无线电(下一代空地通信系统 (NEXCOM))取代其模拟空地无线电基础设施。NEXCOM 无线电提供数字语音和数据通信的能力将在第 2 和第 3 阶段逐步实现。地地运营和管理通信系统将合并为一个集成的地面数字电信系统。
最具挑战性的工作环境需要尽可能最好的通信系统。Talk Through Your Ears® 提供清晰的无线电传输,即使在噪音最大和条件最恶劣的情况下也是如此。这款轻巧、行业坚固的通信系统可实现全新的通信水平。经过特殊设计的耳机结合了入耳式麦克风和扬声器,可提供出色的听力保护和清晰的语音通信。将您的系统带到任何地方 - 它与任何双向无线电和任何 PPE 兼容,甚至呼吸器!通信的未来就在这里,Talk Through Your Ears® 正在引领潮流。
太空自由空间光通信 (FSOC),或称激光通信,在带宽、尺寸、重量、功耗节省以及不受管制的频谱方面,比射频 (RF) 通信具有关键优势。与 RF 通信相比,理论和演示的激光通信系统在 SWaP 相似或相同的情况下,数据速率更高。新的太空网络架构,例如 SpaceX 和 Telesat 等公司目前正在部署的宽带星座,利用光学卫星间链路来提高系统总吞吐量并减少地面站数量,从而降低整体系统成本。除了 LEO 之外,Artemis 计划基础设施还包括猎户座太空舱和地球之间的光通信中继,最终计划扩展到月球轨道器以实现连续表面覆盖。尽管性能优势明显且在各个应用中的采用率不断提高,但最先进的 RF 通信系统目前的表现优于激光通信系统,部分原因是光通信系统无法支持多个同时链路。频率重用、访问方法和动态波束形成等技术使 RF 通信系统能够绕过带宽限制并与网络内的其他节点(例如多个地面站、用户终端等)建立同时链接。这项工作着眼于将此功能扩展到激光通信系统,评估支持多个同时光链路所需的技术,并量化网络配置中多用户激光通信的影响。我们开发了一个模型来模拟这种系统的性能,并根据现有模型和数据对其进行验证。然后将该模型应用于 LEO 和深空网络场景,该场景分析不同的访问方法、网络配置和终端技术,例如光纤放大器与光子集成电路。我们进行权衡研究以确定所提方法的局限性和约束。然后,我们根据关键性能参数为每种场景提出架构建议。例如,我们发现对于 LEO 情况,一组四颗 6U 立方体卫星可以在网状网络配置中通过波分多址实现 12 Gbps 的总系统吞吐量。此外,通过使用基于光子的收发器而不是基于光纤的收发器,可以额外节省约 2.5 倍的质量。
通信可以广泛定义为信息从一个点转移到另一点。当将信息在任何距离内传达时,通常都需要通信系统。在通信系统中,信息传输经常是通过将信息叠加到电磁波上的,该信息充当信息信号的载体。然后将此调制载体传输到接收到的所需目的地,并通过解调获得原始信息信号。使用以无线电频率以及微波和毫米波频率运行的电磁载波波和毫米波频率开发了该过程的复杂技术。但是,也可以使用从频率的光范围选择的电磁载体来实现“通信”。
当今用于战术飞机引导的模拟语音空地通信系统正遭受高密度地区甚高频频段日益饱和的影响。因此,空地通信基础设施正在进行数字化,以确保未来几十年航空运输系统的可持续发展。由于航空业的安全与保障密切相关,强大的网络安全是航空数字化的基础和推动力。实现这一转变的新型空地数据链之一是 L 波段数字航空通信系统 (LDACS)。它将成为未来基于 IP 的航空电信网络的主要远程地面数据链。在本章中,我们描述了 LDACS 的设计过程、草案和最先进的网络安全架构。
C. 地面通信 NASA 正在对月球表面网络的不同方法进行权衡研究,以选出最符合探索要求的实施方案。这些潜在方法包括: • 采用 NASA 的空间对空间通信系统(一种双向通信系统,旨在在航天飞机轨道器、国际空间站和舱外活动机动单元之间提供语音和遥测数据)以超高频率进行语音通信。 • 使用 Wi-Fi 进行近距离高速率视频通信。 • 利用地面无线蜂窝标准实现可扩展、更长距离、高吞吐量的 PNT 服务连接。 [8] 这样的网络可以增强
摘要本文介绍了5G绿色通信系统中能源知识调度算法(EASA)的性能的分析。5G绿色通信系统依靠EASA来管理资源共享。拟议模型的目的是提高5G绿色通信系统中资源共享的效率和能源消耗。主要目标是解决实现最佳资源利用并最大程度地减少这些系统能源消耗的挑战。为了实现这一目标,研究提出了一种新型的能源感知的调度模型,该模型考虑了5G绿色通信系统的特定特征。该模型结合了用于优化资源分配和调度决策的智能技术,同时还考虑了能源消耗限制。所使用的方法涉及数学分析和仿真研究的组合。数学分析用于制定优化问题并设计调度模型,而模拟模型则用于在各种情况下评估其性能。拟议的EASM达到了91.58%的错误发现率,虚假遗漏率为64.33%,患病率阈值90.62%和91.23%的关键成功指数。结果证明了拟议模型在减少能源消耗的同时保持高度资源利用水平的有效性。