1 图卢兹癌症研究中心,INSERM U1037—图卢兹第三大学-保罗萨巴蒂尔—CNRS ERL5294,F-31037 图卢兹,法国;domenico.sorrentino@inserm.fr(DS);Julie.frentzel@merckgroup.com(JF);geraldine.mitou@orange.fr(GM);avedis.torossian@univ-tlse3.fr(AT);coralie.ha2@gmail.com(CH-A.);fabienne.meggetto@inserm.fr(FM);stephane.manenti@inserm.fr(SM);estelle.espinos@inserm.fr(EE)2 波士顿儿童医院和哈佛医学院病理学系,波士顿,马萨诸塞州 02115,美国;Rafael.BlascoPatino@childrens.harvard.edu(RBB); Pighi.chiara@gmail.com (CP); roberto.chiarle@childrens.harvard.edu (RC) 3 Ligue Nationale Contre le Cancer,é quipe labellis é e 2016,F-31037 图卢兹,法国 4 欧洲 ALK 相关恶性肿瘤研究计划 (ERIA),剑桥 CB2 0QQ,英国 5 Merck Serono SA,生物技术过程科学系,Route de Fenil 25, ZI B, 1804 Corsier-sur-Vevey, 瑞士 6 都灵大学分子生物技术与健康科学系, 10126 都灵, 意大利 7 CRCT 技术中心—Plateau de Cytomé trie et Tri cellulaire—INSERM U1037, F-31037 图卢兹,法国; manon.farce@inserm.fr 8 TRANSAUTOPHAGY:欧洲自噬知识多学科研究与转化网络,COST Action CA15138,08193 巴塞罗那,西班牙 * 通信地址:sylvie.giuriato@inserm.fr;电话:+ 33-(5)-82-74-16-35 † 这些作者对这项工作做出了同等贡献。
抗体药物偶联物 (ADC) 属于一类日益壮大的高度靶向生物制药药物。它们结合了特异性结合肿瘤表面抗原的单克隆抗体和通过化学接头连接的高效细胞毒性药物 (1)。使用半胱氨酸或赖氨酸残基作为结合位点的 ADC 具有高度异质性,其表征带来了分析挑战 (2)。质谱法是 ADC 开发过程中常规分析的首选工具。在这里,我们描述了两种用于表征 ADC 的分析工作流程,结合了强制降解分析。在第一个工作流程中,ADC 的高通量表征允许在 Bruker MaXis II™ETD 仪器的天然和还原条件下使用设计的 SEC-HPLC-MS 方法每天分析多达 48 个样本,然后使用 Biopharma Compass ® 进行全自动数据分析
摘要 随着电动汽车的普及和无线电子设备的扩展,对二次电池的需求正在迅速增长。 然而,使用最广泛的锂离子电池经常发生火灾事件,限制了市场的增长。 为了避免易燃性,基于固体电解质的系统在下一代锂离子电池中越来越受到关注。 然而,离子电导率的限制和高制造成本等挑战需要进一步的研究和开发。 在本研究中,我们旨在确定一种尚未得到广泛探索的新型氮基固体电解质材料。 我们提出了一种通过高通量筛选(HTS)选择最终材料的方法,详细说明了用于材料选择和性能评估的方法。 此外,我们展示了氮取代材料与碳和氧置换的从头算分子动力学(AIMD)计算和结果,包括阿伦尼乌斯图、活化能和锂离子电导率最高的材料在 300K 下的预测电导率。虽然性能尚未超越传统固态电解质的离子电导率和活性,但我们的结果为探索和筛选新型固态电解质材料提供了系统框架。该方法也可以应用于探索不同的电池材料,并有望为下一代储能技术的创新做出重大贡献。
库汉技术大学材料综合与加工高级技术的国家主要实验室https://orcid.org/0009-0009-0008-1431-7443
通量和电荷定量定律,用于麦克斯韦类型的较高量规场 - 例如常见的电磁场(“ A场”),以及在字符串/M理论中考虑的B-,RR-和C场 - 通过编码它们的独奏行为,并通过指定单个Branes带来的离散费用(较高的单位单位官方官)来指定这些领域的非扰动完成,从而指定其范围内的单位行为。本文通过Chern-dold角色图来调查对通量和电荷定量化的一般(理性)理论理解,该特征被推广到非线性(自我输送)Bianchi身份,这些身份在较高维度的超级性超级强度理论中出现在d = 10,d = 10,d = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10中。世界卷影。
摘要至少在过去的1100万年中,北非景观在当今的干燥尘土潮湿条件与更潮湿的情况下,植被状况(例如中新世中期记录的条件)反复振荡。这些变化主要是由热带彩虹的扩张和收缩驱动的,这是响应夏季日期的变化。但是,需要其他机制来解释非洲湿度对这种节奏强迫的敏感性的时间变化。观察到的变化的主要间隔是非洲广泛(但不是普遍)变得更干燥和尘土飞扬的上新世 - 普遍过渡(〜3.5–2.4 mA)。在这里,我们介绍了从西北非洲边缘和东部赤道大西洋的表面海洋温度,有孔虫稳定同位素和出口生产力的新的下轨道分辨记录,并将其与已发布的记录进行了比较。在整个研究间隔中,我们发现在生产力和灰尘通量之间的天文学时间尺度上发现了强烈的耦合,这表明东北贸易风对尘埃运输,上升强度以及尘埃驱动的海洋受精的持续影响。我们归因于将尘埃通量的增加归因于向北非洲边缘和东部赤道大西洋的增加,以加强与与北半球冰川增强相关的纬度温度陡峭的纬度温度梯度驱动的贸易风。在此时的中纬度西风中发表的强度增加的证据,我们的结果表明,在上新世更新世过渡的加剧冰川期间,全球大气循环进行了大气循环。
间充质基质细胞衍生的细胞外囊泡(MSC-EVS)是治疗许多神经退行性疾病的有前途的治疗工具。神经炎症在许多情况下通过相互依存的过程的编排在许多此类条件中起着重要作用,这些过程导致血脑屏障(BBB)破裂,免疫细胞浸润和神经元死亡。MSC-EVS显示了调节神经炎症的初步证据,但它们的作用机理仍然未知。因此,我们探讨了MSC-EV在调节脑周细胞中的潜力,该细胞类型在BBB维持中起着至关重要的作用,但尚未被研究为MSC-EVS的治疗靶点。脑周细胞是多面细胞,可以通过参与BBB稳态以及先天和适应性免疫反应来调节神经炎症。周细胞形态已显示出对体内炎症性刺激的响应发生变化,因此,我们使用这种行为来开发一种定量的形态分析方法来评估MSC-EVS的免疫调节功能,以高关注,低成本的方式。使用该测定法,我们能够证明在各种条件下生产的MSC-EV(2D,3D和对细胞因子启动的响应)可以诱导明显的周细胞形态反应,这表明趋化因子和细胞因子分泌的变化与神经炎症相关。
摘要。盐沼泽是碳隔离的重要生态系统。然而,尽管大气式换气量的研究广泛地是在潮汐盐沼泽中进行的,但它们在非潮汐盐沼泽中很少。In this study we measured, throughout 1 year, instantaneous net carbon dioxide (CO 2 ) exchange rates from four halo- phytes which are dominant species of their corresponding habitat ( Sarcocornia fruticosa in a halophilous scrub, Halim- ione portulacoides and Elytrigia atherica in a salt meadow, and Salicornia patula in a glasswort sward) of a Mediter-兰纳非潮汐盐沼。还测量了这些栖息地的土壤CO 2和甲烷(CH 4)伏特液。E. atherica是一种多年生草本物种,在全年中显示出最高的光合作用率,但是每年的多汁草药S. Patula在夏季也具有显着的光合作用率。有趣的是,在大多数每日测量中,两种灌木丛中的木质分数显示了CO 2的摄取。关于所研究的栖息地,卤素磨砂膏和盐草地的土壤Co 2排放量高于玻璃沃特草,并且整体排放量高于潮汐盐沼泽的报道。检测到土壤的吸收和CH 4的排放。尤其是,CH 4排放量非常高,类似于在低盐度沼泽中发现的排放量,通常高于高地下水位盐度的盐沼报道的排放量。土壤矿化商的盐灌木和盐草地的矿化商低于
所有怀孕的大约10%受胎儿生长限制(FGR)的影响。FGR的主要病因是胎盘不足:胎盘不提供适当量的营养素和氧气。目前尚无FGR或胎盘功能不全的治疗方法。由于胎盘在FGR中的关键作用并为胎儿提供营养,因此为治疗性干预提供了绝佳的目标。使用豚鼠孕妇营养限制模型和重复的胎盘纳米粒子介导的IGF1处理,胎盘IGF1信号传导和养分传输途径的表征以了解FGR和治疗的变化。这项研究阐明了反复的胎盘纳米粒子介导的IGF1治疗导致胎儿生长的信号传导机制。总体而言,这项研究导致FGR和治疗组的胎盘内性别特异性激酶信号传导和营养转运蛋白变化。与我们先前使用此治疗的研究相结合,我们证明了这种治疗方法的基本分子信号传导,并概括了该疗法以实现未来人类翻译的合理性。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月14日。 https://doi.org/10.1101/2025.01.11.632556 doi:Biorxiv Preprint