式中,t为钢材厚度,MS为低碳钢,HT为高强度钢。船体结构钢分为普通厚度钢和高强度钢。普通强度钢按质量分为A、B、C、D四个等级;高强度钢分为AH32、DH32、EH32、AH36、DH36、EH36两个强度等级和三个质量等级。
图2 LIDT测量的实验设置:λ /2-半波长相板,p-偏振器,w-楔子,l-镜头,镜头,pm -power仪。在这里:红色箭头 - 泵辐射(1.03 µm),绿色箭头 - 泵的第二个谐波(0.515 µm); b)YB的自相关轨迹:kgw(Pharos)辐射,通过自相关器(GECO,Light Conversion Co,Ltd)和C)571 kHz和298 fs的LIDT测量测量(P OUT-输出功率,P IN- IN -ID IND -ID型泵送功率)。
摘要 明确约束的断层滑动速率对于理解断层系统内的应变分配和相关的地震危险性非常重要。海原断层是青藏高原东北缘一条重要的活跃走滑断层,其晚更新世的滑动速率一直存在争议。Lasserre 等人 (1999) 的前期研究表明滑动速率为 12 ± 4 毫米/年,高于最近通过大地测量确定的相邻断层段的滑动速率。我们利用位于松山村北部的两个站点的新高分辨率机载光探测和测距数据重新分析和评估了滑动速率。基于这些数据,我们修改了现场映射的偏移约束。在马家湾站点,我们记录到 T1/T2 阶地立面顶部左旋位移分别为 130 ± 10 米,底部左旋位移为 93 ± 15 米。在玄马湾遗址,T4/T1′阶地立面的偏移量更新为 68 +3 / −10 米。结合新的地质年代学数据,我们评估 T2 的废弃年龄为 26.0 ± 4.5 ka,T1 的废弃年龄为 9,445 ± 30 年。这些数据表明,基于上部阶地和下部阶地重建,自~26 ka 以来的滑动速率在 5.0 +1.5 / −1.1 和 8.9 +0.5 / −1.3 毫米/年之间。我们的重新评估支持了藏北地区明显的滑动速率差异可能存在系统性偏差,这是由于使用下部阶地重建来解释偏移年龄造成的。
抽象铝是当今使用最广泛的材料,因为包括铝是一种轻质金属,具有相对较高的拉伸强度,良好的形式形式(形式),对腐蚀和非磁性性具有抗性和非磁性性,因此铝在包括飞机行业在内的工业世界中是一种选择。但是,在包括铝合金7075在内的腐蚀环境中,金属仍然会腐蚀,该铝合金通常用于飞机行业。控制腐蚀的努力之一是使用抑制剂。抑制剂是一种化学物质,将其添加到较小的腐蚀环境中时,可以有效地减慢或降低腐蚀速度。测试包括测试机械性能作为支持数据以测试组成(拉伸测试,硬度测试和微结构)和腐蚀速率测试。测试使用环境中潜在的极化方法(TAFEL图)进行的腐蚀速率3.5%NaCl。使用的抑制剂类型是Na 2 WO 4的无机抑制剂,其浓度变化为0.1%,0.3%,0.5%和0.7%。结果表明,浓度为0.1%的抑制剂是降低腐蚀速率的最佳抑制剂浓度。腐蚀速率抑制剂的浓度越高。关键字:铝7075,腐蚀,抑制剂,钨,飞机。简介
假设线性弹性断裂力学,无论物体的几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展测试的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹比 C(T) 试样中的裂纹扩展得更快。这些观察到的差异已经过研究和量化。对于疲劳裂纹扩展测试,在 R = 0 的脉动拉伸下加载的破裂 Kb 试样的裂纹扩展速度是 C(T) 试样中裂纹的 3.6 倍,在所有测试温度和材料 Ti-64、Ti-6242 和 IN-718 上取平均值。使用锻造的 Ti-64 和 IN-718 制成的 C(T) 样品进行了新的疲劳裂纹扩展测试,并与锻件制成的 Kb 样品的疲劳裂纹扩展率进行了比较。发现锻件制成的 Kb 和 C(T) 样品之间的疲劳裂纹扩展率差异非常小。
假设线性弹性断裂力学,无论机体几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展试验的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹扩展速度快于 C(T) 试样中的裂纹。已经研究并量化了这些观察到的差异。对于疲劳裂纹扩展试验,在 R = 0 的脉动拉伸下加载的开裂 Kb 试样的裂纹扩展速度比 C(T) 试样中的裂纹快 3.6 倍,这是在所有试验温度下和材料 Ti-64、Ti-6242 和 IN-718 的平均值。已经使用锻造的 Ti-64 和 IN-718 制成的 C(T) 试样进行了新的疲劳裂纹扩展试验,并将其与锻件制成的 Kb 试样的疲劳裂纹扩展速度进行了比较。发现锻件制成的 Kb 和 C(T) 试样的疲劳裂纹扩展速率差异非常小。