在大脑表现出的动力学活性模式的多功能形式中,振荡是最显着,最广泛的研究之一,但仍然没有得到充分理解。在本文中,我们使用中尺度脑活动的经典神经质量模型(称为线性阈值动力学)提供了神经网络中振荡行为存在的各种结构特征。利用这种动力的开关性质,我们在(i)(i)二维兴奋性抑制网络(E-i Pairs)中获得了网络结构及其外部振荡的各种必要和/或有效的条件,该网络具有一个抑制网络,具有一个抑制性的网络,具有一个抑制性的网络,均一(iii in III),(III),(III),(III),(III)(III),(III),(II III),(II III)(II III)(III)(II III),(II III)(III)(II III)(II III)(III)(II II)(II III)(II III)(II III)(II III)(II III)(II III)(II II)节点和(IV)E-I对的网络。在整个治疗过程中,考虑到所考虑的动态的任意维度,我们依靠缺乏稳定的平衡作为振荡的存在,并提供广泛的数值结果来支持其与更标准的基于信号的基于信号的基于信号的计算神经科学中振荡的定义。
摘要:聚对苯二甲酸乙二醇酯 (PET) 的酶解聚已成为一种潜在的 PET 回收方法,但通常会进行大量的热机械预处理以降低 PET 的结晶度和粒度,这种方法成本高昂且耗能。在当前的研究中,我们使用具有三种不同粒度分布的高结晶度 PET (HC-PET) 和低结晶度冷冻研磨 PET (CM-PET) 来研究 PET 粒度和结晶度对叶堆肥角质酶变体 (LCC-ICCG) 性能的影响。我们发现 LCC-ICCG 水解 PET,导致对苯二甲酸的积累,有趣的是,还会释放出大量的单(2-羟乙基)对苯二甲酸酯。PET 粒度减小会增加 HC-PET 的最大反应速率,而 CM-PET 的最大水解速率在不同粒度下没有显著差异。然而,对于这两种基质,我们表明颗粒尺寸减小对整体转化程度影响不大。具体来说,CM-PET 薄膜在 48 小时内转化为 99 ± 0.2% 的质量损失,而 HC-PET 粉末在 144 小时内仅达到 23.5 ± 0.0% 的转化率。总体而言,这些结果表明,PET 的非晶化是使用 LCC-ICCG 酶进行酶促 PET 回收的必要预处理步骤,但颗粒尺寸减小可能不是必需的。关键词:塑料回收、角质酶、界面生物催化、动力学、结晶度、粒度■简介
摘要 医疗保健技术的进步要求开发高效、微型的植入式医疗设备。本文介绍了一种用于头皮生物医学应用的超宽带植入式天线,涵盖工业、科学和医疗 (ISM)(2.4 − 2.48 GHz)频段。所提出的天线安装在 0.1 − mm 厚的液晶聚合物 (LCP) Roger ULTRALAM(tan δ = 0.0025 和 ε r = 2.9)上,用作覆盖层和基底层的介电材料。LCP 材料因其柔韧性、顺应性结构和生物相容性等理想特性而广泛用于制造电子设备。为了保持电气小辐射器的能力并实现最佳性能,所提出的天线的体积设计为 9.8 mm3(7 mm × 7 mm × 0.2 mm)。在辐射贴片中增加短路针和开口槽,以及在接地平面中增加封闭槽,有利于天线的小型化、阻抗匹配和带宽扩展。值得注意的是,该天线在 ISM 频段的峰值增益为 − 20.71 dBi,阻抗匹配带宽为 1038.7 MHz。此外,根据基于低特定吸收率的 IEEE C905.1-2005 安全指南,该天线可以安全使用。为了评估植入式天线的性能,在均质和异构环境中进行了有限元仿真。为了验证,在装满碎猪肉的容器中进行测量。模拟结果与测量结果一致。此外,还进行了链路预算分析,以确认无线遥测链路的稳健性和可靠性,并确定植入式天线的范围。
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
通讯作者:Christine M. Smudde 加州大学材料科学与工程系 One Shields Ave. Davis, CA 95616, USA 电话:(714) 356-0477 电子邮箱:cmsmudde@ucdavis.edu
已经进行了利用磷酸盐抑制剂控制不锈钢合金腐蚀速率的研究。腐蚀速率测量方法为恒电位极化法,试验金属为201、304不锈钢,腐蚀介质为3.5%NaCl。本研究的目的是确定磷酸盐控制测试金属腐蚀速率的最佳条件。本研究使用独立变量,即磷酸盐浓度(50、100、200、300、400、500 ppm)和工作电极(不锈钢 304 和不锈钢 201)。研究结果表明,对201不锈钢和304不锈钢的最佳缓蚀效率出现在100 ppm浓度下,分别为89.68%和94.03%,腐蚀速率分别降低0.022132 mpy和0.045694 mpy。
激光消融是一种可扩展的技术,用于通过高精度选择性去除材料来降低电极的有效曲折。应用于≈110μm厚的电极涂层,这项工作着重于理解激光消融对生命开始时电极材料特性的影响,以及在整个周期寿命中,消融通道对细胞性能的协同影响。研究了激光后的激光,晶体学的局部变化,并研究了激光冲击电极区域的形态。表明,飞秒脉冲激光消融可以在受影响区域的界面局部在本地局部造成较小的物质损害来实现高速材料的去除。在6C(10分钟)恒定电流恒定电压电荷到4.2 V期间从1 mAh cm-2提高了非驱动电极的1 mAh cm-2,到消化电极的几乎2 mAh cm-2。该好处归因于增强润湿和降低电极曲折的协同作用。维持超过120个周期的益处,并在拆卸后观察到石墨阳极上的液化降低。最后,与润湿分析结合使用的多物理建模表明,激光消除任何一种电极导致了润湿和速率能力的实质性改善,这表明只能通过仅将石墨阳极涂在两种电极上就可以实现实质性的性能益处。
金属合金的疲劳裂纹扩展速率 (FCGR) 曲线通常分为三个区域。区域 II 通常被称为 Paris 区域,通常用单指数的幂律关系建模。区域 I 和 III 分别位于 FCGR 曲线的起点和终点,通常用渐近关系建模。在本文中,我们假设疲劳裂纹扩展在所有裂纹长度和所有应力强度因子范围 (ΔK) 下都受幂律行为支配。为了适应区域 I - III 中 FCGR 斜率的变化,在 Paris 方程中引入了数学枢轴点。存在枢轴点的幂律行为使得能够直接拟合裂纹长度与循环数 (a-N) 曲线,以获得 FCGR 与 ΔK 的关系。这种新方法适用于小而长的裂纹扩展曲线,并能得到精确的多线性 FCGR 曲线,适合重建测得的 a-N 曲线。该方法随后应用于 i) 不同的合金,以显示 FCGR 曲线因合金成分和热处理变化而产生的局部变化,ii) 自然增加微观结构小裂纹的 Δ K 测试,以获得准确的小裂纹 FCGR 数据。与准确的长裂纹数据的比较表明,小裂纹速度更快,但从区域 I 到区域 II 的过渡发生在特定的疲劳裂纹扩展速率下,从而导致明显的偏移
在各种应用中都使用了稳定的具有较大脉冲能量和峰值功率的稳定的固态脉冲激光源,从基础研究到工业材料加工,医学和电信[1-3]。使用饱和吸收器(SA)生成脉冲激光器已成为当今最受欢迎的方法。近年来,由于成功地应用石墨烯而刺激了许多具有分层结构的二维(2D)材料,因为它们具有超快速恢复时间,可宽带饱和吸收和简单制造过程的优势,因此已重新发现了有前途且有趣的SA材料[4-7]。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> tinse友好型材料,由于其独特的特性,低毒性,低毒性和低成本和低成本和低成本[8,9],对通信,微电子,激光和非线性光学领域引起了广泛关注。由于具有可调的带隙特性,SNSE 2具有明显的宽带饱和吸收特性。几层和大散装SNSE2的间接带隙范围从1.07(〜1159 nm)到1.69 eV(〜734 nm),分别对应于1.84至2.04 eV的直接频段范围[10]。几层SNSE 2的间接带隙表示在1μm下可饱和吸收剂的能力。 Cheng等人在2017年首次报道了多层SNSE 2在1μm处的非线性光学特性,这是一种基于SNSE 2 -SA的被动Q开关波导固态激光器,其最小脉冲宽度为129 ns,脉冲宽度为129 ns,脉冲能量为6.5 NJ [10]。在2018年,Zhang等人。在2018年,Zhang等人。报告了基于SNSE 2 -SA [11]的高功率被动Q开关的YB掺杂纤维激光器。到目前为止,SNSE 2的非线性光学响应已通过不同波段的Q开关或模式的激光器进行了广泛研究[12-15]。但是,对固态激光器中SNSE 2的脉冲调制特征的研究还不够。
基于脑电图 (EEG) 的脑机接口 (BCI) 近来在虚拟现实 (VR) 应用中引起越来越多的关注,成为一种有前途的工具,可以“免提”方式控制虚拟物体或生成命令。视频眼动图 (VOG) 经常被用作一种工具,通过识别屏幕上的注视位置来提高 BCI 性能,然而,当前的 VOG 设备通常过于昂贵,无法嵌入到实用的低成本 VR 头戴式显示器 (HMD) 系统中。在本研究中,我们提出了一种新颖的免校准混合 BCI 系统,该系统结合了基于稳态视觉诱发电位 (SSVEP) 的 BCI 和基于眼电图 (EOG) 的眼动追踪,以提高 VR 环境中九目标基于 SSVEP 的 BCI 的信息传输速率 (ITR)。在以 3×3 矩阵排列的三种不同频率配置的模式反转棋盘格刺激上重复实验。当用户注视九种视觉刺激中的一种时,首先根据用户的水平眼球运动方向(左、中或右)识别包含目标刺激的列,并使用从一对电极记录的水平 EOG 进行分类,该电极可以很容易地与任何现有的 VR-HMD 系统结合使用。请注意,与 VOG 系统不同,可以使用与记录 SSVEP 相同的放大器来记录 EOG。然后,使用多元同步指数 (EMSI) 算法的扩展(广泛使用的 SSVEP 检测算法之一)在选定列中垂直排列的三个视觉刺激中识别目标视觉刺激。在我们对 20 名佩戴商用 VR-HMD 系统的参与者进行的实验中,结果表明,与 VR 环境中基于传统 SSVEP 的 BCI 相比,所提出的混合 BCI 的准确度和 ITR 均显着提高。