引言造血细胞移植(HCT)是一种用于治疗各种血液学疾病的程序,例如白血病,淋巴瘤和某些遗传疾病(1)。虽然HCT可以挽救生命,但也可能导致各种并发症,包括肾脏疾病。了解HCT后肾脏疾病的机制对于早期检测和治疗该疾病至关重要(1,2)。几种机制有助于HCT后肾脏疾病的发展。在HCT之前,患者接受了包括高剂量化学疗法和/或全身辐射的条件治疗方案(1,2)。这些治疗可以通过诱导肾脏组织的炎症和氧化应激引起直接肾脏损伤(3)。移植物抗宿主病(GVHD)是HCT后的常见并发症,供体免疫细胞会攻击包括肾脏在内的受体器官。GVHD - 相关的肾脏损伤可能表现为急性或慢性
克隆性造血 (CH) 是一种与年龄相关的过程,在此过程中,造血干细胞和祖细胞 (HSPC) 获得突变,从而获得增殖优势和克隆扩增。最常见的突变基因是表观遗传调节因子、DNA 损伤反应基因和剪接因子,这些基因对于维持功能性 HSPC 至关重要,并且经常参与血液系统恶性肿瘤的发展。已知的 CH 风险因素,包括年龄、之前的细胞毒性治疗和吸烟,会增加患 CH 的风险和/或可能增加 CH 适应性。CH 已成为许多与年龄相关的疾病的新风险因素,例如血液系统恶性肿瘤、心血管疾病、糖尿病和自身免疫性疾病等。未来表征驱动 CH 进化的机制对于开发预防和治疗方法至关重要。
单基因血液病是全球最常见的遗传性疾病之一。这些疾病导致严重的儿童和成人发病率,有些甚至会导致出生前死亡。新型体外造血干细胞 (HSC) 基因编辑疗法有望改变治疗格局,但并非没有潜在的局限性。体内基因编辑疗法为这些疾病提供了一种潜在更安全、更易于获得的治疗方法,但由于缺乏针对 HSC 的递送载体而受到阻碍,而 HSC 位于难以接近的骨髓微环境内。在这里,我们提出,可以通过利用胎儿发育过程中易于接近的肝脏中的 HSC 来克服这种生物障碍。为了促进基因编辑货物向胎儿 HSC 的递送,我们开发了一种可电离的脂质纳米颗粒 (LNP) 平台,靶向 HSC 表面的 CD45 受体。在体外验证靶向 LNP 通过 CD45 特异性机制改善信使核糖核酸 (mRNA) 向造血谱系细胞的递送后,我们证明该平台在多种小鼠模型中介导体内安全、有效和长期的 HSC 基因调节。我们进一步在体外优化了该 LNP 平台,以封装和递送基于 CRISPR 的核酸货物。最后,我们表明,优化和靶向的 LNP 在单次宫内静脉注射后增强了胎儿 HSC 中概念验证位点的基因编辑。通过在胎儿发育期间体内靶向 HSC,我们系统优化的靶向编辑机制 (STEM) LNP 可能提供一种可转化的策略来治疗出生前的单基因血液疾病。
Cristina Astrid Tentori,MD 1.2;卡特琳娜·格雷戈里奥(Caterina Gregorio),博士学位3,4.5;玛丽·罗宾(Marie Robin),医学博士6; Nico Gagelmann,医学博士7; Carmelo Gurnari,医学博士8; Somedeb Ball,MD 9; Juan Carlos Caballero Berrocal,MD 10;卢卡·拉尼诺(Luca Lanino),医学博士1.2; Saverio d'朋友,孟1; MARTA SPAAFIF,博士学位11; Giulia Maggioni,MD 1.2;埃里卡·特拉瓦利诺(Erica Travaglino),理性师12; Elisabetta Sauta,博士学位1; Manja Meggendorfer,博士13; Lin-Pierre Zhao,医学博士6; Alessia Campagna,MD 1.2; Genomed4All,Synthema,Gesmd,Fisim和Eurobloodnet; Victor Savevski,Meng 1; Armando Santoro,MD 1.2; Najla Allai,MD 14;大卫·萨尔曼(David Sallman),医学博士14; Francesc Sole,博士15; Guillermo Garcia-Manero,MD 16; Ulrich Germing,MD 17;尼古拉斯·科格(Nicolaus Koger),医学博士7; Shahram Kordasti,博士18.19;瓦莱里亚·桑蒂尼(Valeria Santini),医学博士20;吉列尔莫·桑兹(Guillermo Sanz),医学博士21;沃尔夫冈·克恩(Wolfgang Kern),医学博士13; Uwe Platzbecker,MD 22; Maria Diez-Campolo,医学博士10; Jaroslaw P. Maciejewski,博士23;莱昂内尔·阿德雷斯(Lionel Adres),医学博士6; Pierre Fenaux,医学博士6; Torsten Haferlach,医学博士13; Amer M. Zeidan,医学博士24;加斯通·卡斯特拉尼(Gastone Castellani),博士25.26; Komrokji Branches,医学博士14; Francesca Ieva,博士学位3,27;和Matteo Giovanni Della Porta,MD 1.2
Kyowa Kirin通过遵守所有相关法律,法规,
Srishti U Sahu 1,2,3,10、Madalena Castro 1,2,3,10、Joseph J Muldoon 4,5、Kunica Asija 1,2,3、Stacia K Wyman 1、Netravathi Krishnappa 1、Justin Eyquem 4,5,6,7,8,9、David N Nguyen 1,4,5、Ross C Wilson 1,2,3 隶属关系:1 美国加利福尼亚州伯克利市加州大学伯克利分校创新基因组学研究所。2 美国加利福尼亚州伯克利市加州大学伯克利分校分子与细胞生物学系。3 美国加利福尼亚州伯克利市加州定量生物科学研究所。4 美国旧金山市格拉德斯通-UCSF 基因组免疫学研究所。5 美国旧金山市加州大学旧金山分校医学系。 6 美国加利福尼亚州旧金山市加利福尼亚大学帕克癌症免疫治疗研究所。7 美国加利福尼亚州旧金山市加利福尼亚大学微生物学和免疫学系。8 美国加利福尼亚州旧金山市加利福尼亚大学海伦·迪勒家庭综合癌症中心。9 美国加利福尼亚州旧金山市加利福尼亚大学人类遗传学研究所。10 这些作者对本研究的贡献相同。
造血干细胞移植(HCT)代表了某些恶性和非恶性血液学疾病的治疗方法。在HCT之前进行调节方案,同种异体环境中移植物抗宿主病(GVHD)的发展以及免疫重建的延迟通过诱导组织损伤或体液改变会导致早期和晚期并发症。止血和/或补体系统是涉及体液和细胞反应的生物调节防御系统,并且在同种异体HCT之后与这些并发症有多样化。止血和补体系统具有多种相互作用,在生理和病理条件下都描述了这些相互作用。它们具有共同的组织靶标,例如内皮,这表明在HCT后早期或晚期的几种严重并发症的发病机理中相互作用。并发症,两个系统相互干扰并因此导致疾病发病机理的并发症包括与移植相关的血栓形成微型血管病(HSCT-TMA),正弦梗阻综合征/Veno cocclusive疾病(SOS/VOD)和GVHD。在这里,我们回顾了当前关于同种异体HCT后止血变化和补体的知识,以及这些变化如何定义临床影响。
长期重建造血干细胞 (LT-HSC) 用于通过干细胞移植治疗血液疾病。LT-HSC 数量极少,且在体外培养过程中分化迅速,这阻碍了它们的临床应用。之前使用基质饲养层、确定培养基混合物和生物工程的发展已使 HSC 在培养中扩增,但主要是短期 HSC 和祖细胞群,而牺牲了幼稚的 LT-HSC。在此,我们报告了一种生物工程 LT-HSC 维持生态位的创建,该生态位重建了生理细胞外基质组织,使用软胶原蛋白 I 型水凝胶来驱动血管周围基质细胞 (PerSC) 中的巢蛋白表达。我们证明,由 HSC 支持性骨髓基质细胞表达的巢蛋白具有细胞保护作用,并且通过调节代谢,对 PerSC 中的 HIF-1 α 表达很重要。当 CD34 +ve HSC 被添加到包含表达 Nestin/HIF-1 α 的 PerSC 的生物工程微环境时,LT-HSC 数量保持正常,克隆和体内重建潜力正常,无需补充培养基。我们提供概念证明,我们的生物工程微环境可以支持 CRISPR 编辑的 HSC 的存活。体外成功编辑 LT-HSC 可能对血液疾病的治疗产生潜在影响。
Prof. Dr. Folkert W. Asselbergs is a consultant cardiologist, Prof of Translational Data Science at the University of Amsterdam, Chair of the Amsterdam Heart Center, founder of the Amsterdam Center of Computational Cardiology, Prof of Precision medicine at the Institute of Health Informatics, University College London, Chair data infrastructure Dutch Cardiovascular Alliance (www.dcvalliance.nl), and associate本节数字创新部分欧洲心脏杂志的编辑。最近,他建立了一个裸露的单位,该单元将提供一个框架,以进行常规护理中的务实试验,以通过提高指南依从性(www.nuddingtrials.com)来进行知识发现和改善患者护理的改善。他的研究计划使用来自电子健康记录,国家注册机构和大型基于人群的队列研究的现实世界大数据的重点。他发表了635篇论文,是教科书“人工智能在现实世界数据中的临床应用”的编辑。他是值得信赖的AI领域的几个( - )国家财团的协调员和Co-Pi,翻译数据科学和数字健康
辐射暴露尤其损害造血系统的细胞,诱导全血管减少症和骨髓衰竭。对这些过程的研究,以及开发治疗以防止造血损伤或增强辐射暴露后的恢复,通常需要在辐射后早期对骨髓细胞进行分析。虽然流式细胞术方法的表征很好地鉴定和分析了非辐照环境中的骨髓种群,但在处理辐照组织时会出现多种并发症。是辐射引起的C-KIT丧失,这是小鼠原始造血种群传统门控的中心标记。这些包括造血干细胞(HSC),这些干细胞是血液重建和终身骨髓功能的核心,并且是这些研究中分析的重要靶标。本章概述了HSC识别和分析的技术。