作者:R De Rouck · 2023 年 · 被引用 6 次 — 在过去的几十年里,化学、生物、放射和核 (CBRN) 威胁已成为严重风险,促使各国优先考虑做好准备……
摘要 — FlightGoggles 是一款用于感知驱动机器人车辆的逼真传感器模拟器。FlightGoggles 的主要贡献有两个方面。首先,FlightGoggles 使用摄影测量生成的图形资产提供逼真的外部感受传感器模拟。其次,它还能够结合 (i) 实时在计算机上生成的合成外部感受测量和 (ii) 在运动捕捉设施中飞行中的车辆在运动中生成的车辆动力学和本体感受测量。FlightGoggles 能够模拟飞行中的自动驾驶汽车周围的虚拟现实环境。当飞行器在 Flight-Goggles 虚拟现实环境中飞行时,外部感应传感器会实时合成渲染,而所有复杂的外部动力学则通过飞行器的自然交互有机生成。FlightGoggles 框架允许研究人员通过避免估计复杂且难以建模的交互(如空气动力学、电机力学、电池电化学和其他代理的行为)来加速开发。使用逼真的外部感应传感器模拟进行飞行器在环实验的能力促进了新的研究方向,例如在障碍物丰富的环境中快速敏捷的自主飞行、安全的人机交互和灵活的传感器选择。Flight-Goggles 已被用作选拔 AlphaPilot 自主无人机竞速挑战赛中晋级的九支队伍的主要测试。我们调查了顶级 AlphaPilot 团队的方法和结果,这些方法和结果可能具有独立意义。
摘要。为提供安全的替代方案,用于术中的流体镜检查,已研究超声(US)作为各种计算机辅助矫形外科手术(CAOS)的替代安全成像方式。然而,低信号与噪声比,成像伪影和骨表面出现几毫米(mm)的厚度,阻碍了我们在CAOS中的广泛扩散应用。为了为这些问题提供解决方案,研究集中于精确,健壮和实时骨分割方法的发展。最近基于深度学习的方法显示出非常有希望的结果。但是,在训练深度学习模型时,骨头数据的稀缺引入了显着的挑战。在这项工作中,我们提出了一种基于一种新的生成对抗网络(GAN)结构的计算方法,以(1)生成合成的B模式US图像和(2)实时实时的骨表面掩模。我们展示了如何针对此类任务实现偶性概念。由两个卷积块武装,称为自预测和自我发项块,我们提出的gan模型合成了现实的B模式US图像和分割的骨骼面膜。使用两种不同的美国机器对27名受试者收集的1235次扫描进行了定量和定性评估研究,以显示我们模型与最先进的GAN的比较结果,用于使用U-NET进行骨表面分割的任务。
Miller 和 Alessi 的研究以及其他类似理论的研究 [16] 表明,保真度(即模拟的真实程度)成为工程师和研究人员在设计训练系统时可以操纵的核心设计因素。在这一传统下,后续研究 [11, 17-18] 通过考虑更多背景因素来确定训练系统的适当保真度水平(例如,受训者的专业知识水平、训练阶段、任务),对 Miller 的假设进行了研究。训练模拟器的开发人员和部署人员的问题变成了:“训练情况必须与实际任务情况有多相似才能提供有效的训练?”——Hays 和 Singer [11] 称之为保真度问题。Miller 的理论框架与后续研究一起,开启了一系列研究,旨在确定模拟器最优化和最具成本效益的真实度水平。
通过雾进行成像在诸如自动驾驶汽车,增强驾驶,飞行飞机,直升机,无人机和火车等工具中具有重要的应用。在这里我们表明,从雾反射的光的时间填充具有分布(伽马),该分布与从雾(高斯)遮住的物体所反映的光中不同。这有助于区分背景光子与雾和信号光子从遮挡物体反射的信号光子之间。基于此观察结果,我们恢复了被密集,动态和异质雾阻塞的场景的反射和深度。对于实际用例,成像系统以最小的占地面积为单位的反射模式设计,并基于LiDAR硬件。特别是,我们使用单个光子雪崩二极管(SPAD)摄像机,该摄像头将计入单个检测到的光子。在没有先验知识的情况下,开发了一个概率计算框架,以估计雾化本身的雾性特性。其他解决方案是基于雷达的,该雷达遭受分辨率较差(由于长波长)的障碍,或者按时门控遭受较低的信噪比。建议的技术在雾室中产生的多种雾密度中进行了实验评估。它在可见度为37厘米时演示了离相机57厘米的恢复对象。在这种情况下,它以5厘米的分辨率恢复了深度,并且场景反映了PSNR和3的4DB的反射。4×SSIM的重建质量随时间推移门控技术。4×SSIM的重建质量随时间推移门控技术。
投影仪输入和显示之间的传播延迟小于一帧,因此结果是逼真的实时模拟。这对于模拟学员和模拟图像之间的实时交互至关重要。Christie Matrix StIM TM 是真正的游戏规则改变者。它是第一个使用 LED 照明同时和独立控制可见光和近红外光谱的模拟系统。它是一个智能投影系统,可以逐帧实时平衡和优化颜色、亮度和黑色级别。它是第一个使用固态 LED 照明为模拟和训练而设计的系统 - 几乎无需维护,无需消耗品。Christie Matrix StIM 是一个可扩展的环境显示系统,它提供实现人眼极限分辨率的独特功能,同时模拟夜视镜,为夜视镜训练带来革命性的新功能。科视 Matrix StIM 独特的无灯照明系统提供前所未有的稳定性、可靠性和多年的连续运行。该系统由科视专业知识设计和制造,具有超长的使用寿命、质量和易维护性。科视基于固有稳定的长寿命平台构建,不使用偏振滤光片或随时间褪色,提供独特的无灯照明系统,具有前所未有的稳定性和可靠性。科视 Matrix StIM 无需耗材、发热量低、功耗低、完全符合 RoHS 规定并可连续运行多年,是一种几乎无需维护的环保模拟系统。
本分析定义了研究模拟设备,并确定了飞机模拟设备的三大类别:(1) 飞机模拟器,(2) 飞机飞行训练设备,以及 (3) 基于计算机的模拟设备。对于大多数航空人为因素研究和开发项目而言,模拟的使用是一种极其重要的资源。这种重要性源于多种因素,包括可以实现的成本和时间节省、能够重现和检查使用实际设备不安全的情况,以及人机性能的控制和测量。模拟提供了一个早期机会,可以将经验丰富的机组人员带入航空人为因素设计过程,以评估和确保适当的人机界面和工作负荷水平。
