获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
我们提出了一个准多项式时间经典算法,用于估计在热相变点以上温度下量子多体系统的配分函数。众所周知,在最坏情况下,同样的问题在该点以下是 NP 难的。结合我们的工作,这表明量子系统相位的转变也伴随着近似难度的转变。我们还表明,在相变点以上的 n 个粒子系统中,距离至少为 Ω(log n)的两个可观测量之间的相关性呈指数衰减。当哈密顿量具有交换项或在一维链上时,我们可以将 log n 的因子改进为常数。我们结果的关键是用配分函数的复零点来表征相变和系统的临界行为。我们的工作扩展了 Dobrushin 和 Shlosman 的开创性工作,该工作涉及经典自旋模型中相关性衰减与自由能解析性之间的等价性。在算法方面,我们的结果扩展了 Barvinok 提出的一种用于解决量子多体系统经典计数问题的新方法的范围。