由于配分函数难以处理,通过最大似然法训练基于能量的模型 (EBM) 需要马尔可夫链蒙特卡罗 (MCMC) 采样来近似数据和模型分布之间的 Kullback-Leibler 散度的梯度。然而,由于模式混合困难,从 EBM 中采样并非易事。在本文中,我们提出学习变分自动编码器 (VAE) 来初始化有限步长 MCMC,例如从能量函数推导出来的朗之万动力学,以实现 EBM 的有效摊销采样。利用这些摊销的 MCMC 样本,EBM 可以通过最大似然法进行训练,这遵循“综合分析”方案;而 VAE 通过变分贝叶斯从这些 MCMC 样本中学习。我们将这种联合训练算法称为变分 MCMC 教学,其中 VAE 追逐 EBM 朝向数据分布。我们将学习算法解释为信息几何背景下的动态交替投影。我们提出的模型可以生成与 GAN 和 EBM 相当的样本。此外,我们证明了我们的模型可以学习针对监督条件学习任务的有效概率分布。
助理教授 数学系,SL Bawa DAV 学院,巴塔拉 摘要 斯里尼瓦萨·拉马努金是一位印度数学家,以其在数论、连分数和无穷级数方面的开创性贡献而闻名,他仍然是数学史上最具影响力的人物之一。拉马努金 1887 年出生于殖民地印度,他基本上是自学成才,尽管受过的正规教育有限,但他还是发展了自己的数学理论。他早期在配分函数、高度合数和模形式性质方面的工作为数论的重大进步铺平了道路。拉马努金与英国数学家 GH 哈代的合作尤为卓有成效,从而发展了几个数学概念,包括著名的哈代-拉马努金数。他在无穷级数方面的工作,尤其是他的快速收敛到圆周率的级数,对数学分析和计算算法产生了深远的影响。尽管拉马努金的一生很短暂——32 岁便去世——但他的发现仍然激励着当代数学研究,尤其是在密码学、统计力学和计算机科学等领域。本文探讨了拉马努金的一生、他在数学方面的主要贡献以及他对现代数学的持久影响,展示了他的工作成果的持久遗产及其在数论和数学计算领域的相关性。
量子退火 (QA) 的出现是未来量子计算发展的重要一步,也将极大地促进统计物理和材料科学建模的发展。到目前为止,QA 在这些领域的应用仍然很少,其中包括确定具有长程弹性相互作用的平衡微结构 1 、横向场 Ising 模型中的相变 2 、通过 Shastry-Sutherland 模型研究受挫磁系统的能态 3 以及设计超材料 4 。另一个例子是结合使用量子退火器和玻尔兹曼机来采样自旋玻璃并预测 MoS 2 层的分子动力学数据 5 。更一般地说,由 D-Wave 公司实施的 QA 可以有效地找到离散优化问题的基态配置,在学术界和工业界都有许多应用 6 – 10 。 QA 的概念是在低温下以明确定义的基态初始化系统的哈密顿量,然后平滑地转换能量景观,使其代表所需的优化问题。如果仔细执行这种绝热变换,系统最终会处于目标哈密顿量的基态,因此可以找到优化问题的全局最小值。然而,在实践中,准备、转换和读出过程并不是完全绝热、无噪音和与环境分离的,因此有时会发现能量更高的状态,尤其是与简并态 11 或太小的能隙结合时。因此,对于典型的 QA 应用,需要多次重复和读出来确定真实基态。在本文中,我们证明了该技术的这一缺陷实际上可以转化为优点,因为它可以非常有效地确定有限温度的热力学性质。从材料科学的角度来看,T = 0K 时的基态配置通常只对许多实际应用具有有限的意义。例如,对于铁磁体,所有自旋都排列在基态,而对于有限温度,热涨落会导致有限的关联长度、相变和温度相关的磁化。对此类属性进行统计建模的传统方法是使用蒙特卡罗 (MC) 采样技术,因为由于相空间的巨大规模,通常无法明确计算配分函数。此类计算最突出的方法可能是使用 Metropolis 转移概率生成离散马尔可夫链,这会生成一系列遵循玻尔兹曼统计的配置,因此可以通过更容易地计算这些马尔可夫链上的时间平均值来表达集合平均值 12、13。在实践中,根据玻尔兹曼分布 p ∼ exp ( − β ∆ E ) (其中 β = 1 / k BT ),从一个状态到另一个状态的转变正在发生,其概率取决于两个配置之间的能量差 ∆ E 。通常,这种方法在低温下效率低下,因为新配置的拒绝率非常高,因此在局部最小值中捕获的相空间采样不足,导致对所需热力学性质的预测有噪声。另一种重要的采样策略是由 Wang 和 Landau 开发的,他们使用非马尔可夫算法通过平坦直方图技术提取状态密度,从中可以计算出所有所需的热力学性质 14 。除了这些主要技术之外,Dall 等人还开发了一种在低温下快速采样玻尔兹曼分布的算法。然而,这种算法最适合具有短程相互作用的系统 15 。另一种公平采样基态和