摘要:自然化合物的可持续生产在当今的工业景观中越来越重要。这项研究研究了酿酒酵母的代谢工程,以有效的类胡萝卜素的有效生物合成:canthaxanthin,Zeaxanthin和astaxanthin。利用量身定制的父母酵母菌菌株SP_BC,我们通过筛选和识别CRTW和CRTZ酶变体来优化类胡萝卜素途径。Bradyrhizobium sp。的CRTW变体。达到了425.1±69.1 µg/L的canthaxanthin滴度,而Pantoea ananatis的CRTZ变体获得了70.5±10.8 µ g/l的Zeaxanthin滴度。此外,我们通过探索所有三个研究的类胡萝卜素和细胞器腔室的酶融合策略来优化类胡萝卜素的产生,专门用于增强astaxanthin合成。我们通过将最佳基因构建体整合到酵母基因组中并删除GAL80基因,从而进一步改善了类胡萝卜素的产生,从而可以将蔗糖用作碳源。在5 L生物反应器发酵中评估了工程菌株SP_BC-CAN001 ∆ GAL80,使用蔗糖获得了60.36±1.51 mg/l的明显canthaxanthin滴度。这项研究最终确定了酿酒酵母作为有效类胡萝卜素生物合成的可行平台,并且在该酵母菌系统中首次将蔗糖的生存能力作为碳素产生的碳源说明。这些发现为以工业规模的可持续性,具有成本效益的类胡萝卜素生产铺平了道路。
分析了五种酵母菌株,以生成由人工智能 (AI) 使用卷积神经网络或线性判别分析 (LDA) 确定的识别模型。通过向软件输入每个获取细胞的每个通道的形态特征来构建模型。我们结合了两个模型:一个基于明场特征,通过对模型预测的每个菌株的身份及其实际类别进行统计分析来验证;第二个使用 LDA 算法,并添加了自发荧光测量。计算出的“超参数”允许在分析混合种群时最大限度地分离不同的菌株。
非传统酵母东方伊萨酵母 (Issatchenkia orientalis) 的强健特性使其能够在高酸性条件下生长,因此,人们对使用多种碳源生产有机酸的兴趣日益浓厚。最近,东方伊萨酵母的遗传工具箱的开发,包括附加型质粒、多个启动子和终止子的特征以及 CRISPR-Cas9 工具,简化了东方伊萨酵母的代谢工程工作。然而,由于缺乏有效的多拷贝整合工具,多重工程仍然受到阻碍。为了促进通过多重 CRISPR-Cas9 介导的基因组编辑构建大型复杂代谢途径,我们开发了一条生物信息学流程来识别和确定全基因组基因间位点的优先级,并表征了位于 21 个基因间区域的 47 个 gRNA。对这些位点进行了向导 RNA 切割效率、基因盒的整合效率、由此产生的细胞适应度和 GFP 表达水平的筛选。我们进一步利用来自这些已充分表征的基因座的组件开发了一种着陆垫系统,该系统可帮助利用单个引导 RNA 和用户选择的多个修复模板整合多个基因。我们已经证明了利用着陆垫同时将 2、3、4 或 5 个基因整合到目标基因座中,效率超过 80%。作为概念验证,我们展示了如何通过一步整合多个位点的五个基因拷贝来提高 5-氨基乙酰丙酸的产量。我们进一步证明了该工具的效率,即利用单个引导 RNA 和五个不同的修复模板整合五个基因表达盒,构建了琥珀酸生产代谢途径,从而在批量发酵中生产出 9 g/L 的琥珀酸。这项研究证明了单个 gRNA 介导的 CRISPR 平台在非传统酵母中构建复杂代谢途径的有效性。该着陆垫系统将成为 I. orientalis 代谢工程的宝贵工具。
摘要:Cyprinid疱疹病毒2(CYHV-2)是疱疹病毒造血坏死(HVHN)疾病的病因,在克鲁克斯鲤鱼培养工业中造成严重的经济损失。在这项研究中,通过在酿酒酵母细胞的表面显示ORF132(称为EBY100/PYD1-ORF132),我们评估了针对CYHV-2感染的口服给药的保护性效率。用EBY100/PYD1-ORF132口服疫苗接种后,在粘膜和全身组织中引起了强烈的先天和适应性免疫反应。重要的是,口服疫苗接种为CRUCIAS CARP CYHV-2感染提供了显着的保护,导致相对生存率(RPS)为64%。此外,口服抑制了选定组织中的病毒负荷并减轻了组织学损害。我们的结果表明,在酿酒酵母上的表面播种的ORF132可以用作针对CYHV-2感染的潜在口服疫苗。
摘要:腐生担子菌分泌的漆酶是一种多功能生物催化剂,仅需氧气即可氧化多种芳香族化合物。酿酒酵母是真菌漆酶工程的首选宿主。为了帮助酵母分泌活性酶,天然信号肽通常被酿酒酵母α交配因子(MF α 1)的前原前导序列取代。然而,在大多数情况下,只能获得基础酶水平。在酿酒酵母中与α因子前原前导序列融合的漆酶的定向进化过程中,我们证明了信号肽中积累的突变显著提高了酶的分泌。在这里,我们描述了为增强在酿酒酵母培养物液体提取物中检测到的漆酶活性而实施的不同蛋白质工程方法。我们通过使用实验室中连续进行的漆酶进化活动获得的适应性最强的突变 α 因子前导序列,证明了天然和工程漆酶的分泌得到改善。我们还特别关注了蛋白质 N-糖基化在漆酶生产和特性中的作用,以及通过共识设计引入保守氨基酸,从而能够表达酵母原本不会产生的某些漆酶。最后,我们修改了在之前的定向进化活动中积累的漆酶编码序列 (CDS) 突变的贡献,这些突变促进了酶的生产。
随着包括多重基因组工程在内的合成生物学工具的生物技术应用迅速扩展,构建战略性设计的酵母细胞工厂变得越来越可能。这在很大程度上要归功于 CRISPR/Cas 技术和高通量组学工具等基因组编辑方法的最新进展。模型生物面包酵母 ( 酿酒酵母 ) 是生产高价值代谢物的重要合成生物学基础。多重基因组工程方法可以加快酵母细胞工厂中有效异源途径的构建和微调。最近出现了许多利用这一点的多重基因组编辑技术。本综述重点介绍此类工具的最新进展,例如 delta 整合和 rDNA 簇整合与 CRISPR-Cas 工具相结合,可大大提高多重整合效率。还回顾了作为多拷贝基因整合创新替代方法的预置门系统的例子。除了多重整合研究之外,还讨论了替代基因组编辑方法的多重化。最后,我们讨论了涉及非常规酵母的多重基因组编辑研究以及自动化对于高效细胞工厂设计和构建的重要性。将 CRISPR/Cas 系统与传统酵母多重基因组整合或供体 DNA 递送方法相结合,可通过提高效率和准确性来加快菌株开发。诸如在基因组中预先放置合成序列等新方法以及改进的生物信息学工具和自动化技术有可能进一步简化菌株开发过程。此外,讨论的用于改造酿酒酵母的技术可以适用于其他工业上重要的酵母物种,以进行细胞工厂开发。
4-羟基苯甲酸(PHBA)是粘酸和液晶聚合物的重要工业前体,其生产基于石化工业。为了减少我们对化石燃料的依赖并提高可持续性,微生物工程是一种更具吸引力的方法,用于替代传统的化学技术。但是,微生物菌株的优化仍然受筛选阶段的高度限制。生物传感器通过减少筛选时间并实现更高的吞吐量来帮助减轻这一问题。在本文中,我们构建了一个名为SBAD的合成生物传感器,由R. palustris的HBAR的PHBA结合结构域组成,N-terminus的Lexa DNA结合结构域和C-Terminus的反式激活域B112。在存在不同的苯甲酸衍生物的情况下测试了SBAD的响应,并通过流量细胞仪测量细胞荧光输出。除了其他羧酸(包括P-氨基苯甲酸),水杨酸,蒽,阿司匹林和苯甲酸在内的其他羧酸之外,还发现了生物传感器通过培养基中外部添加PHBA激活。此外,我们能够证明该生物传感器可以检测到遗传修饰的酵母菌菌株中PHBA的体内产生。在生物传感器荧光和PHBA浓度之间观察到了良好的线性。因此,该生物传感器将非常适合作为高吞吐量筛选工具,可通过代谢工程生产苯甲酸衍生物。
我们已经确定了从MATA到MATA的酵母交配型基因的同义转换的两个新型中间体。在HO核酸内切酶裂解后,观察到5'至3'的外核解消化,直到ho切割远端,产生了3'端的单链尾巴。在无法切换的RAD52应变中,此镜头更为广泛。令人惊讶的是,HO切割的近端受到保护,免受降解。这种稳定取决于无声复制供体序列的存在。通过定量应用聚合酶链反应(PCR)来鉴定第二个中间体。在MAT近端YA交界处出现之前,开关产物的YVA-MAT远端共价片段出现。未检测到MAT远端与HML远端序列的共价连接。我们建议,HO CUT远端的MAT DNA侵入完整的供体,并通过DNA合成扩展。在RAD52应变中阻止了此步骤。这些中间体与MAT开关的模型一致,在该模型中,HO切割的远端最初在链入侵和从供体中传递信息。关键词:重组机制/交配型/酵母/双链休息时间!rads2
酿酒酵母是广泛使用的生物合成系统之一,用于生产各种生物产品,尤其是生物治疗药物和重组蛋白。由于外来基因的表达和插入总是受到酿酒酵母内源性因素和非生产性程序的阻碍,因此已经开发出各种技术来增强转录的强度和效率并促进基因编辑程序。因此,阻碍异源蛋白质分泌的限制已经得到克服。已经开发出负责转录起始和精确调控表达的高效启动子,这些启动子可以通过合成启动子和双启动子表达系统进行精确调控。适当的密码子优化和协调以适应酿酒酵母的基因组密码子丰度有望进一步提高转录和翻译效率。通过将专门设计的信号肽与上游外源基因融合,可以实现高效、准确的转运,从而促进新合成的蛋白质的分泌。除了广泛应用的启动子工程技术和明确的内质网分泌途径机制外,创新的基因组编辑技术 CRISPR/Cas(成簇的规律间隔的短回文重复序列/CRISPR 相关系统)及其衍生工具可以更精确、更有效地进行基因破坏、定点突变和外源基因插入。本综述重点介绍为精确调控酿酒酵母表达系统的代谢而开发的复杂工程技术和新兴遗传技术。
摘要 芽殖酵母的有丝分裂退出取决于有丝分裂纺锤体沿细胞极性轴的正确定位。当纺锤体无法准确定位时,一种名为纺锤体位置检查点 (SPOC) 的监视机制会阻止细胞退出有丝分裂。具有缺陷 SPOC 的突变体会变成多核并失去其基因组完整性。然而,对 SPOC 机制的全面了解尚不足。在本研究中,我们确定了 1 型蛋白磷酸酶 Glc7 与其调节蛋白 Bud14 相关联,这是一种新的检查点成分。我们进一步表明,Glc7-Bud14 促进了 SPOC 效应蛋白 Bfa1 的去磷酸化。我们的结果表明,两种机制并行作用以产生强大的检查点反应:首先,SPOC 激酶 Kin4 将 Bfa1 与抑制激酶 Cdc5 隔离开来,其次,Glc7-Bud14 使 Bfa1 去磷酸化以完全激活检查点效应物。