该研究小组此前已展示了开发一种利用人工智能有效修改蛋白质功能的方法的可能性。利用这种方法,我们现在已经成功地以最少的实验显著提高了酶活性(图 1)。该方法首先通过常规随机诱变方法制备少量突变体,并进行实验以获取人工智能的训练数据(机器学习正常运行所需的数据)。接下来,我们使用人工智能技术贝叶斯优化来预测应该引入什么类型的突变才能获得具有所需功能的蛋白质。这将使我们能够提出一组小规模的突变体,该突变体富含具有所需功能的蛋白质,并且可以低成本用于实验。 在本研究中,我们仅使用从大约 80 个突变体的实验结果中获得的训练数据,成功将肽连接酶分选酶的催化活性提高了五倍(图 2)。此外,我们发现,通过稍微改变训练数据的元素,就可以绘制出一张地图,可视化由突变引起的功能变化的整体情况(图 3)。这些结果证明人工智能在修饰蛋白质功能方面是有效的,希望未来该方法能应用于多种功能蛋白质的开发。 [论文信息] 标题:机器学习指导的定向进化文库设计循环
[作者姓名] R. Harada,Y。Hirakawa,A。Yabuki,E。Kim,E。Yazaki,R。Kamikawa,K。Nakano,M。Eliáš
[作者姓名] R. Harada,Y。Hirakawa,A。Yabuki,E。Kim,E。Yazaki,R。Kamikawa,K。Nakano,M。Eliáš
分析了荞麦、苦荞麦、荞麦叶、海带、海带穗和梭形藻的多酚含量。其中,荞麦叶的多酚含量最高。热水提取后用植物酶处理,荞麦叶的多酚产量提高了 56%,海带的多酚产量提高了 34%。对海藻和荞麦叶的 3T3-L1 前脂肪细胞进行的细胞毒性试验表明,与 1 mg/mL 的对照组相比,没有显著的细胞毒性作用。此外,在检查荞麦叶和海带提取物对前脂肪细胞分化的影响时,证实荞麦叶提取物在 10 mg/mL 时抑制脂肪分化,海带在 0.1 mg/mL 时抑制脂肪分化。荞麦海带酵素食品的淀粉酶活性比糙米酵素食品高6.5倍,蛋白酶活性高27倍,膳食纤维、多酚、DPPH清除能力高2倍以上;荞麦海带酵素补充食品中褐藻酸含量比糙米酵素补充食品高30%以上,海藻酸含量高7.8%。
白质核酸酵素, 44, 1665 (1999). 3) L. Vernis, A. Abbas, M. Chasles, CM Gaillardin, C. Brun, JA Huber-
作为先前的研究,在2003年,MC5E试图在大肠杆菌和酵母菌中产生棕色藻类,但无法检查其活性,因为两者都被表示为不溶性蛋白质11)。但是,在棕色藻类MC5E的功能分析的分析中没有进步。同时,自2000年代以来,已经开发了一种新的藻酸的用途。由于大多数应用都需要特定的藻酸序列,因此预计将持续的藻酸供应,其序列适合其预期用途。为此,它已成为建立“ TALER制造藻酸盐”技术的一种期待已久的方法,该技术使用MC5E人为地控制藻酸盐的序列。作者开始通过RT-PCR从Macomb孢子体中编码多个MC5E候选蛋白的克隆cDNA,并试图为名为SJC5-VI的蛋白质构建异源细胞表达系统,该蛋白估计具有最高的表达水平。 12)使用大肠杆菌和酵母进行细胞内表达,但不可能作为可溶性蛋白获得。接下来,当我们试图将其表达为分泌的蛋白质时,我们发现,尽管枯草芽孢杆菌和酵母根本没有分泌细胞外的靶蛋白,但使用昆虫细胞时发现它是很好的分泌,并且使用该表达系统产生了重组SJC5-VI,并检查了其功能及其功能。当主要由M组成的聚合物增加了Ca 2+产生的底物凝胶量,这表明G的比率增加了。此外,1 H-NMR分析表明,具有连续M(-mmmmmm-)的序列被转换为交替的M和G(-gmgmg-)的序列。该表达系统对于其他棕色藻类中的MC5E也有效,并且还可以研究COC5-1的酶活性,COC5-1是Okinawa Mozuku的MC5E的候选蛋白。 13)COC5-1的表达模式与SJC5-VI不同,发现G主要产生五个连续序列的平均序列。有趣的是,SJC5-VI和COC5-1的热稳定性存在显着差异,而前者在50°C下治疗后完全停用了30分钟,而后者即使在相同条件下处理后仍保持活跃。尽管作者只进行了两项研究,以研究温度对棕色藻类中MC5E的影响,但MC5E的热稳定性在棕色藻类之间似乎有所不同,棕色藻类的温度适合性不同。所使用的酶的稳定性也是人为控制藻酸盐序列的重要因素,因此,生活在温暖环境中的南部棕色藻类可能是酶的吸引人。
在2019年11月,第一个医学药科学小组委员会发表了“医疗领域中药物相互作用的关系指南”,并考虑了卫生,劳动和福利部和福利部对包裹的指南和修订,介绍了如何评估和管理医疗领域的药物相互作用的基本思想。此外,学术医疗保健药学科学第四次小组委员会发表了“ Pakkilovid的药物互动管理指南(Nilmatorelvir/Ritonavir)”(2022年2月28日)和“ Zocoba(Encitrelvir)的指南”(ENCITRELVIR)爆发指南”(ENCITRELVIR)爆发”(ENCITRELVIR)(1月19日)(2023年),以及在20223年1月的爆发。但是,继续支持药物相互作用管理活动,不仅是特定药物,还可以更新此类信息,加强信息缺乏并培养药剂师的管理能力,这对于提高医疗环境中适当的药物交互管理质量的质量和传播是非常重要的问题。因此,为了解决这些问题,启动了2024年的医学药学学术小组委员会小组委员会,以建立在医疗环境中适当的药物互动管理的全面基础。 作为这项活动的一部分,我们最近创建了“与代谢酶(P450种)和转运蛋白介导的相互作用相互作用时要注意的药物清单”。我们希望有效利用该表以及上述指南和指导,并要求您确保参考上一页和下一个页面以及每个表上列出的预防措施。
这也使得直接在原子水平上研究酶反应的整个过程成为可能,为酶学的新领域打开了大门。这将是根据反应中间体的结构(即酶的真实活性状态)合理设计催化剂和药物的第一步。 出版信息 标题:在原子分辨率下可视化光裂解酶的 DNA 修复过程 作者:Manuel Maestre-Reyna*、Po-Hsun Wang、Eriko Nango、Yuhei Hosokawa、Martin Saft、Antonia Furrer、Cheng-Han Yang、Eka Putra Gusti Ngurah Putu、Wen-Jin Wu、Hans-Joachim Emmerich、Nicolas Caramello、Sophie Franz-Badur、Chao Yang、Sylvain Engilberge、Maximilian Wranik、Hannah Louise Glover、Tobias Weinert、Hsiang-Yi Wu、Cheng-Chung Lee、Wei-Cheng Huang、Kai-Fa Huang、Yao-Kai Chang、Jianh-Haur Liao、Jui-Hung Weng、Wael Gad、Chiung-Wen Chang、Allan H. Pang、Kai-Chun Yang、Wei-Ting Lin、 Yu-Chen Chang、Dardan Gashi、Emma Beale、Dmitry Ozerov、Karol Nass、Gregor Knopp、Philip JM Johnson、Claudio Cirelli、Chris Milne、Camila Bacellar、Michihiro Sugahara、Shigeki Owada、Yasumasa Joti、Ayumi Yamashita、Rie Tanaka、Tomoyuki Tanaka、Fangjia Luo、Kensuke Tono、Wiktoria Zarzycka、Pavel Müller、Maisa Alkheder Alahmad、Filipp Bezold、Valerie Fuchs、Petra Gnau、Stephan Kiontke、Lukas Korf、Viktoria Reithofer、Christian Joshua Rosner、Elisa Marie Seiler、Mohamed Watad、Laura Werel、Roberta Spadaccini、Junpei Yamamoto、So Iwata、Dongping Zhong、Joerg Standfuss、Antoine Royant、Yoshitaka Bessho*, Lars-Oliver Essen*, Ming-Daw Tsai* <杂志> Science < DOI > 10.1126/science.add7795 补充信息 [1] X射线自由电子激光器(XFEL)
1。限制酶处理(MLS-Coxiv-SMA I)2。丙酮酸钠的临床试验3。开发线粒体疾病的诊断药物(GDF15)4。非侵入性呼吸分析([13 c] -pyr)5。细胞内高还原改善疗法(Loxcat)6。基因组编辑(CRISPR-CAS9)7。新基因疗法(Tale-ddda-ugi)8。GDF15受体(GFRAL)和抗体药物