摘要 成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 核酸酶系统已经能够生成疾病模型并开发许多遗传和非遗传疾病的治疗方法。然而,大规模基因组重排的产生引发了人们对 CRISPR/Cas9 核酸酶方法临床应用的安全性担忧。在这些事件中,由于染色体截断而形成的微核和染色体桥可导致局限于一条或几条染色体的大规模基因组重排。这种被称为染色体碎裂的现象最初是在癌细胞中描述的,人们认为它是由有丝分裂过程中染色体分离缺陷或 DNA 双链断裂引起的。在这里,我们将讨论影响 CRISPR/Cas9 诱导的染色体碎裂(以下称为 CRISPR 碎裂)的因素及其结果、表征这些事件的工具以及将其最小化的策略。 关键词:基因组编辑; CRISPR/Cas9;染色体碎裂;基因治疗;基因毒性;微核;染色体不稳定性。
摘要群集的定期间隔短的短质体重复序列(CRISPR)/CAS9核酸酶系统允许生成疾病模型,并开发许多遗传和非遗传疾病的治疗方法。但是,大型基因组重排的产生引起了CRISPR/CAS9核酸酶方法的临床应用的安全问题。在这些事件中,由于染色体截短而导致的微核和染色体桥的形成会导致局部定位于一个或几个染色体的大规模基因组重排。这种现象被称为染色体,最初是在癌细胞中描述的,在癌细胞中据信是由有丝分裂或DNA双链断裂过程中的染色体分离引起的。在这里,我们将讨论影响CRISPR/ CAS9诱导的Chromothripsis的因素,以下称为CRISPRTHRIPSIS及其成果,这些工具是表征这些事件和策略以最小化它们的工具。关键词:基因组编辑; crispr/cas9; Chromothripsis;基因疗法;遗传毒性;微核;染色体不稳定性。
N6-甲基腺苷(m6A)是高等生物中最常见的修饰,研究表明m6A修饰广泛存在于哺乳动物、植物、真菌等生物体中(1),m6A修饰主要发生在DRACH序列的腺嘌呤上(2,3),高通量测序发现m6A主要分布在终止密码子、mRNA外显子、3'UTR及蛋白质编码区(4)。RNA的生物学功能依赖于多种修饰,其中甲基化占有很大比例(5,6)。m6A修饰在基因表达调控中起着基础性作用(7),同时m6A修饰还参与RNA的翻译、降解、剪接、去核和折叠等过程(5,8,9)。m6A的调控主要依赖于m6A的酶系统,包括“Writer”、“Eraser”、“Reader”。 “Writer”是一种甲基转移酶,主要包括METTL3、METTL14和WTAP,这些甲基转移酶将甲基从甲基供体S-腺苷甲硫氨酸(SAM)转移到RNA腺嘌呤的第六个N原子上。“Eraser”是一种去甲基化酶,主要包括脂肪质量与肥胖相关蛋白(FTO)和ALKBH5。FTO是第一个在m6A修饰中发现的去甲基化酶(9,10)。研究发现,用siRNA敲除FTO,mRNA中M6A含量增加,而过表达FTO则可降低细胞内m6A水平(11)。但也有学者认为FTO对m6A无明显影响,尤其是对核小RNA。相对于FTO作为去甲基化酶发挥作用的观点,有学者认为FTO和ALKBH5的调控位点为了逆转甲基化,倾向于维持非甲基化状态的稳定性(12)。在FTO被抑制或去除的情况下,异常的m6Am会干扰输出机制,可能导致mRNA的异常预剪接(13)。结合以上观点,FTO与m6A酶系统中其他蛋白的作用需要更加平衡和充分的研究。甲基化修饰要实现其生物学功能,需要与相应的识别蛋白结合,也就是“Reader”,包括YT521-B同源结构域家族(YTHDF)蛋白(14)。目前的研究更多集中在YTHDF1/2/3上,虽然这三者被认为具有不同的作用,但由于其序列的相似性和结合靶标的趋同,它们很可能具有叠加或协同作用(15)。根据目前的结果,Reader 包括 YTHDF 和 IGF2BP3 等蛋白质,
细菌逆转录酶系统在许多生物技术应用中充当单链 DNA 的细胞内工厂。在这些技术中,天然的逆转录酶非编码 RNA (ncRNA) 被修饰以编码模板,以通过逆转录产生定制 DNA 序列。逆转录效率是逆转录酶技术的主要限制步骤,但我们缺乏系统的知识,了解如何在改变逆转录酶序列以产生定制 DNA 的同时提高或保持逆转录效率。在这里,我们测试了数千种对逆转录酶-Eco1 ncRNA 的不同修饰,并在汇集变体文库实验中测量 DNA 的产生,从而确定了 ncRNA 中对修饰具有耐受性和不耐受性的区域。我们将这些新信息应用于特定应用:使用逆转录酶与 CRISPR-Cas9 RNA 引导核酸酶 (editron) 结合产生精确的基因组编辑供体。我们使用酿酒酵母中的高通量文库来额外定义编辑酶的设计规则。我们将有关 retron DNA 生成和编辑子设计规则的新知识扩展到人类基因组编辑,以实现迄今为止最高效率的 retron-Eco1 编辑子。
摘要CRISPR/CAS9系统的使用在过去几年中迅速增长。在这里,描述了在人类非机智的体细胞系(NTHY-ORI)中的单核苷酸多态性的优化,突出了以克服有关递送和脱靶的问题的策略。,我们同时使用慢病毒和化学脂质作为递送剂以及两种创建双链断裂(DSB)的策略。前者通过经典的Cas9核酸酶(标准策略)诱导了DSB,而第二个则采用了修改后的CAS9产生单链破裂(SSB)。使用单链供体寡核苷酸或HR410-PA供体矢量(HR)进行敲门。可以通过将双镍酶系统与HR载体化学转染相结合来获得所需的细胞。此结果可能是由于DSB的类型造成的,这可能主要是由于Blunt(标准策略)和伸出时HR(Double Nickase)时的非同源末端连接而进行的。我们的结果表明,双镍酶适合在永生的NTHY-ORI细胞系中敲门,而标准CRISPR/ CAS9系统适合在/ DEL突变中创建基因敲除基因敲除。
在过去的几十年中,植物生物技术的进步允许开发转基因的玉米品种,这些品种显着影响了农业管理并改善了全球的谷物产量。迄今为止,转基因的品种占世界玉米培养区域的30%,并结合了除草剂,昆虫和疾病耐药性,非生物胁迫耐受性,高产量和提高的营养质量等性状。玉米转化是转基因玉米发展的先决条件,不再是主要的瓶颈。使用形态调节剂的方案已显着发展,以增加转化频率和基因型独立性。使用稳定或瞬态表达和组织培养方法的新兴技术,例如使用RNA引导的内核酸酶系统作为一个体内所需的靶标的突变器,同时双倍型产生和编辑/单倍倍倍倍型诱导者介导的基因组介导的基因组编辑和plulen presection sextres sextress sex sepress,本综述总结了玉米转换方案,技术和应用的重大进展,并讨论了当前状态,包括针对特征发展的管道以及与当前和未来的基因和遗传修改和遗传编辑的玉米品种有关的调节问题。
利用 CRISPR-Cas9 核酸酶系统技术进行基因编辑可被视为纠正多种单基因疾病中的遗传突变最有前途的策略之一。在本文中,我们首次介绍了利用 CRISPR-Cas9 基因编辑纠正地中海地区最常见的 b 0 39 地中海贫血突变的方法。结果表明,在纯合 b 0 39 地中海贫血患者的红系前体细胞上进行 CRISPR-Cas9 纠正 b 0 39 地中海贫血突变后,存在正常的 b 珠蛋白基因。等位基因特异性 PCR 和测序证明了这一点。发现校正后的 b 珠蛋白 mRNA 积累效率高,并且 b 珠蛋白和成人血红蛋白 (HbA) 的相关“从头”产生率高。 CRISPR-Cas9 强制的 HbA 产生水平与游离 a 珠蛋白链过量的显著减少相关。分析了编辑程序的基因组毒性(低插入/缺失和无脱靶)。该方案可能是开发有效编辑 b 0 39 患者 CD34 + 细胞的起点,也是设计联合治疗的起点,联合使用 CRISPR-Cas9 编辑 b 珠蛋白基因和其他治疗方法,例如使用化学诱导剂诱导 HbA 和/或胎儿血红蛋白 (HbF)。
摘要:微藻是地球上最丰富的光合单细胞真核生物之一,被认为是各种工业应用的替代可持续资源。衣藻是一种新兴的微藻模型,可通过多种生物技术工具进行操作,以生产高价值的生物产品,如生物燃料、生物活性肽、色素、保健食品和药物。具体而言,莱茵衣藻已成为不同基因编辑技术的研究对象,这些技术可用于调节微藻代谢物的产生。目前可用的主要核基因组编辑工具包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN),以及最近发现的成簇的规律间隔的短回文重复序列 (CRISPR)-CRISPR 相关蛋白 (Cas) 核酸酶系统。后者表现出了有趣的编辑能力,已成为基因组编辑的重要工具。在本综述中,我们重点介绍了有关 CRISPR-Cas 在莱茵衣藻基因工程中的方法和应用的现有文献,包括最近的转化方法、最常用的生物信息学工具、Cas 蛋白和 sgRNA 表达的最佳策略、CRISPR-Cas 介导的基因敲入/敲除策略,以及最后与 CRISPR 表达和修饰方法相关的文献。
疟原虫的无性血液阶段很容易通过同源重组来适应遗传修饰,从而使寄生虫基因的功能性研究在生命周期的这一部分中并非必不可少。然而,常规的反向遗传学不能应用于无性血液阶段复制中必不可少的基因的功能分析。已经开发了各种策略,用于浆细胞的条件诱变,包括基于重组酶的基因缺失,可调节启动子以及mRNA或蛋白质破坏稳定系统。在其中,可二聚Cre(DICRE)重组酶系统已成为p中有条件基因缺失的强大方法。恶意。在该系统中,噬菌体CRE以两种单独的酶无活性多肽的形式表达,每种酶融合了不同的雷帕霉素结合蛋白。雷帕霉素诱导的两个成分的异二聚化恢复重组酶活性。我们已经在啮齿动物疟原虫p。berghei,并表明可以在哺乳动物和蚊子寄生虫阶段具有很高的效率来实现雷帕霉素诱导的floxed DNA序列切除。此工具可用于投资基本基因的功能,不仅在无性血液阶段,而且在疟原虫生命周期的其他部分。
多环芳烃 (PAH) 是威胁生态系统和人类健康的普遍污染物。在这里,我们分离并鉴定了一株新菌株 Hydrogenibacillus sp. N12,它是一种嗜热 PAH 降解菌。菌株 N12 在 60!C 以上利用萘作为唯一碳源和能量来源,并且还与许多其他 PAH 共同代谢。通过气相色谱-质谱 (GC-MS) 和稳定同位素分析在萘分解代谢中鉴定了代谢物。基于所鉴定的代谢物,我们提出了两种可能的代谢途径,一种是通过水杨酸,另一种是通过邻苯二甲酸。全基因组测序显示,菌株 N12 拥有一条 2.6 Mb 的小染色体。结合遗传和转录信息,我们揭示了萘降解的新基因簇。这些基因被命名为 nar AaAb,预计编码萘双加氧酶的 α 和 β 亚基,随后被亚克隆到大肠杆菌中,并通过全细胞转化检测酶活性。还表征了降解其他几种三环 PAH 的能力,表明除了萘降解基因簇外,菌株 N12 中还共存着其他组成性表达的酶系统。我们的研究为嗜热 PAH 降解剂在生物技术和环境管理应用中的潜力提供了见解。