大多数常规口服药物产品(例如片剂和胶囊)的配方可在口服后立即释放活性药物,从而实现快速、完全的全身药物吸收。此类速释产品可相对快速地吸收药物并产生伴随的药效学效应。然而,在药物从剂型中完全吸收后,血浆药物浓度会根据药物的药代动力学特征下降。最终,血浆药物浓度会降至最低有效血浆浓度 (MEC) 以下,导致治疗活性丧失。在达到此点之前,如果需要持续的治疗效果,通常会给予另一剂。给予另一剂的替代方法是使用可提供持续药物释放的剂型,从而维持血浆药物浓度,超过速释剂型通常所见的浓度。近年来,已经开发出各种改良释放药物产品来控制药物的释放速率和/或药物释放时间。
摘要:纳米颗粒载体药物输送是一个新兴的研究领域,正在给制药行业带来重大变革。本文讨论了纳米颗粒载体,特别是用作靶向输送药物输送系统的工程纳米颗粒载体。用于药物输送系统的纳米颗粒载体包括聚合物、胶束、树枝状聚合物、脂质体、陶瓷、金属和各种形式的生物材料。这些纳米颗粒载体的特性非常有利于靶向药物输送,可使药物在目标区域有效积累,降低药物毒性,减少全身副作用,并提高药物的整体使用效率。纳米颗粒载体可有效穿过各种生物障碍物,与微粒载体相比,细胞摄取率相对较高,从而使药物能够到达目标细胞或组织。使用纳米颗粒载体进行药物输送可延长药物的释放时间,从而最终降低成本并减少需要给患者注射的剂量。目前,人们正在广泛研究将纳米颗粒作为药物输送载体,用于治疗癌症、艾滋病毒和糖尿病等具有挑战性的疾病。
可再生能源以取代常规能源,为气候变化缓解计划做出贡献并实现能源独立性。储能系统是可持续能源系统不可或缺的一部分。目前,储能系统大多依赖于锂离子电池,这些电池价格昂贵,不环保且易燃。因此,正在开发更安全,更便宜,更环保的电池。水电池是锂离子电池的有前途的替代品,但是由于水的电化学稳定窗口狭窄,其能量密度较低[1]。因此,设计了双极NA-ion电池,导致电池和能量密度的电压增加[2]。在这项工作中,钒钛钠(NVTP)用作阳极和阴极,用于形成对称双极NVTP | NVTP硬币类型细胞。使用两层和三个堆叠层组装二极电池,以达到3.6 V的电压。此外,还使用并研究了两个不同组合物的电解质。在图1中。NVTP的电静态电荷排出循环的结果|提出了包含2和3个堆叠层的NVTP硬币类型细胞。可以观察到快速淡出的淡出,这主要是由于破坏和寄生反应问题。双极NVTP的库仑效率,能力保留和自我释放时间|比较了NVTP电池。
在药物制剂中,可以根据需要改变活性药物成分(API)等因素,例如速率,位点或释放时间,以创建改良的释放(MR)剂型。MR制剂可以包括延迟释放,脉动释放,扩展释放等[1]。MR制剂提供了各种优势,包括降低给药频率,增加患者依从性,副作用减少和延长作用持续时间。最终,MR配方在加强患者生活质量的同时提供了更好的治疗结果。自从有史以来第一届美国食品药品监督管理局(美国FDA)批准的三维印刷平板电脑以来,人们对该技术在药物输送和生物医学应用中的应用产生了越来越多的兴趣。3D打印可以快速对药品的原型制作,从而使研究人员能够在短时间内筛选多个配方,从中选择理想的候选人。添加剂制造,通常称为3D打印,是一个以逐层方式打印3D对象的过程[2]。3D打印的最常见类型包括增值税光聚合(VPP),融合沉积建模(FDM),粉末床融合(PBF),喷墨写作和直接墨水写作[3]。在这篇评论中,我们将重点介绍用于制定修改的各种3D打印机
戈登·摩尔对微电子发展的贡献推动了数字革命的迅猛发展。秉承摩尔博士对科学的热爱和发明的热情,该基金会寻求支持那些创造新工具、技术、流程或方法的人,这些新工具、技术、流程或方法具有很高的潜力,可以加速基金会三大主要关注领域的进步:科学研究、环境保护和患者护理。到 2026 年,该基金会将提供近 3400 万美元,以支持 50 名摩尔发明家研究员。该奖学金主要面向特定研究型大学、医学院和特定非学术环境研究和患者护理机构的早期职业员工。每个符合条件的机构可以提名两人。每位研究员每年将从基金会获得 200,000 美元,为期三年。此外,该基金会每年将向主办机构提供 25,000 美元,以支付管理该赠款的相关费用,三年的奖金总额为 675,000 美元。每个主办机构每年必须出资 50,000 美元,直接支持发明者的工作。这可以是“实物”,例如释放时间或使用通常需要收费的特殊设施。我们希望每位研究员都能亲自参与他们的发明,并且我们要求每位研究员至少将 25% 的时间投入到他们的发明中
眼睛是维持视力的关键,但容易患上糖尿病视网膜病变、老年性黄斑变性、青光眼和干眼症等疾病。这些疾病会严重影响生活质量并导致失明。传统的眼部疾病治疗方法,尤其是眼药水,生物利用度低,在眼表的滞留时间短。为了克服这些问题,人们开发了新的药物输送系统,如水凝胶、隐形眼镜、微针和纳米系统,以提高药物渗透性并保持治疗效果。药物可以通过全身、局部、玻璃体内、角膜内、结膜下和脉络膜上腔途径输送到眼睛,每种途径都有不同的优点和局限性。全身给药通常会导致眼部药物浓度低和全身副作用。局部眼药水易于涂抹和局部使用,但在吸收和滞留方面存在困难。玻璃体内和脉络膜上腔注射可向后段提供靶向输送,但具有侵入性并存在感染风险。结膜下和角膜内途径提供了侵入性较小的替代方案,并提高了靶向能力。纳米系统和控释技术有望克服当前的障碍,旨在提高药物的生物利用度、延长释放时间并提高患者的依从性。总体而言,先进的药物输送方法对于有效治疗前段和后段眼部疾病都很重要。
多层内镜下肌切开术(诗)是阿acalasia的既定治疗方法之一[1,2],但是诗歌后胃肠道回流疾病(GERD)仍然是一个问题[3,4]。诗后患者有症状性GERD的发生率较低,尽管内镜表明食管炎和异常酸性释放时间(AET)[3,5,6]。但是,无症状的GERD可以预先处理狭窄,Barrett的元素/发育不良,甚至食管癌等并发症[7]。GERD的医疗疗法受到持续的长期成本,依赖性和潜在副作用的限制[8]。内肠植物疗法被插入以增强食管下括约肌处的抗反浮肿机制[9];但是,他们未能显示出一致的症状改善或持久的治疗方法。有关诗后反流的文献有限但增长,多中心研究在约50%的患者中提到AET,以及约10%的患者的症状性GERD和侵蚀性食管炎[10,11]。在当前时代,无论报道的诗后GERD发生率有何变化,诗歌后的反流都会影响大量的症状,并且潜在的长期并发症尚待确定临床意义。与腹腔镜Heller肌切开术不同[12],诗不包括相关的屈服程序。最近,无切口的无牙性底层[13]和内窥镜全厚度杂志(EFTP)一直在越来越受欢迎,以治疗GERD [14 - 16]。但是,它们在诗后反流中的功效尚不清楚。我们在诗后GERD患者中对EFTP进行了随机,假对照研究。
急性髓系白血病 (AML) 的治疗依赖于几十年前的药物,虽然近年来取得了一些突破,但 AML 仍然以预后不良和存活率低为特点。药物再利用可以加速新疗法的临床前开发,通过纳米载体封装,可以进一步扩大潜在可行候选药物的数量。抗精神病药物氯丙嗪 (CPZ) 已被确定为 AML 治疗的再利用候选药物。纳米封装可以降低 CPZ 对中枢神经系统的影响,从而提高其治疗 AML 的适用性。利用乳液蒸发技术,我们开发了装载 CPZ 的聚乙二醇化 PLGA 纳米粒子,用于 AML 治疗。纳米粒子经 DLS 表征为 150 至 300 纳米之间,经 TEM 表征为球形,载药量至少为 6.0% (w/w)。吸附药物最初爆发释放后,剩余 80% 的药物在 PLGA 纳米颗粒中保留至少 24 小时。载有 CPZ 的纳米颗粒对 AML 细胞具有与释放 CPZ 相同的细胞毒性潜力,但作用速度较慢,与药物释放时间延长相一致。至关重要的是,静脉注射到斑马鱼幼虫体内的纳米颗粒不会在脑中积聚,纳米封装还可以防止 CPZ 穿过人工膜模型。这表明 CPZ 纳米封装的目的已经实现,即避免对中枢神经系统产生影响,同时保留药物的抗 AML 活性。
摘要:气管肿瘤虽然很常见,但在成年人中通常是恶性的。手术去除是非转移性肺部恶性肿瘤的主要疗法,但只有一小部分非小细胞肺癌患者才有可能受到肿瘤的数量和位置以及患者的整体健康状况的限制。本研究提出了另一种治疗方法:使用肺泡导管通过肺部路线施用雾化化学治疗颗粒,以靶向肺部肿瘤。为了提高对病变的递送效率,必须了解局部药物沉积和粒子转运动力学。本研究使用经过实验验证的计算流体颗粒动力学(CFPD)模型来模拟在具有10代(G)的3二维气管机关树中吸入化学治疗颗粒的传输和沉积。基于颗粒释放图,提出了有针对性的药物输送策略,以增强G10中两个肺部肿瘤部位的颗粒沉积。结果表明,受控药物释放可以改善两个目标区域的颗粒递送效率。使用气管导管的使用显着影响靶向肿瘤的颗粒递送效率。参数分析表明,使用较小的导管可以根据肿瘤的位置和所使用的导管直径的位置将超过74%的颗粒传递到靶向肿瘤部位,而使用常规颗粒给药方法少于1%。此外,结果表明颗粒释放时间对粒子沉积在同一吸入率中具有显着影响。这项研究是理解导管直径对局部气管注射对靶向小肺气道靶向肿瘤的第一个步骤。
纳米技术的快速发展彻底改变了药物输送系统,大大提高了药物的功效,同时减少了不良副作用。为了实现最佳生物利用度、延长释放时间和准确靶向,传统的药物输送技术有时会遇到困难。相反,纳米粒子的尺寸范围从 1 到 1000 纳米,对药物的药代动力学、生物分布和细胞吸收提供了无与伦比的控制。本文研究了纳米粒子药剂学,并强调了它们如何改变药物输送和靶向。本文讨论了各种类型的纳米粒子,包括脂质体、聚合物纳米粒子、树枝状聚合物、固体脂质纳米粒子和量子点,以了解它们在药物输送中的独特特性和应用。本文对药物释放的机制进行了严格分析,例如被动和主动靶向、刺激响应系统和细胞摄取途径,以展示如何设计纳米粒子以实现靶向治疗效果。此外,本文还讨论了纳米粒子的药代动力学特征和生物分布模式,强调了它们在增强治疗效果的同时降低全身毒性的潜力。即使具有令人鼓舞的潜力,仍有许多障碍需要克服,例如稳定性、大规模生产、监管部门批准和安全问题。然而,纳米粒子已用于许多治疗领域,从基因转移和癌症治疗到疫苗的研制和传染病的管理。本综述旨在全面了解纳米粒子药物输送系统的当前状况,强调它们对制药行业的变革性影响。本文最后概述了纳米粒子研究的未来方向,并期待进一步的突破能够重塑现代医学的格局。