摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平弗劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 状态下的湍流均方根 (rms) 速度。我们发现湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析非常吻合。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度中间层动力学在统计平均值上受 SMT、ST 和 KT 控制。
构建一种理论,即统一量子力学(QM)和一般相对论(GR)一直是一项近一个世纪的努力,一直持续到今天。即使在理论量子重力方面取得了长足的进步,我们仍然没有完整的解决方案。也许是由于这项努力的巨大困难,因此早期实现了体验物理学在量子重力领域中起着的关键作用,这是早期实现的,这是对重力波(GWS)在2015年提高引力波(GWS)的首次观察的作用[1-4]。在2016年GW发现论文之前,量子重力实验探针的建议包括γ射线爆发[5],米歇尔森实验室量表的干涉仪[6],超高的能量宇宙射线和界面[7] [7] 9],重力耦合G [10,11],量子与重力散射[12,13],分子干涉测定法[14],洛伦兹违反了签名和约束[15],以及许多其他[16] [16] [16],两种模型依赖于模型的空间(例如,弦量量子量)(例如,弦量量子量)(例如,独立的量子)。从2016年开始,在越来越多的新(或更新)的实验溶液(包括干涉仪)中,可以检测到GW的较弱领域中可能弱的信号。实际上,尽管GR正确地解释了所有当前的GW观察结果[17-19]和重力测试[20],但仍然有可能
摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平佛劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 范围内的湍流均方根 (rms) 速度。研究发现,湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型得出的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析结果吻合良好。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度动力学在统计平均值上受 SMT、ST 和 KT 控制。
晨星应用物理,有限责任公司提议研究一种生成潜在的胚胎电磁推进技术的方案。这是对:NASA创新的高级概念(NIAC),I阶段 - 附录编号:NNH15ZOA0001N-15NIAC-A1。Morningstar Energy Box是基于Godin和Roschin的Searl和俄罗斯装置的革命衍生物。改变游戏规则的技术能量盒与俄罗斯人的机械笼子相似,每个searl使用层压辊和带有铁磁液体储层的独特主环来增强电气和磁性性能。在早期实验测试中,该电磁设备在稳态旋转时损失了2至5磅的190磅。通过瞬态运动,重量变化下降了多达20至40磅。在最终的测试系列中,该设备意外地显示了14磅重量的减轻或稳态期间7.3%的损失;在短暂情况下发生了12%的损失。确定了一些可能的解释,其中一些解释可能属于可支持的技术证据或投机。这些努力包括:将角动量转换为线性动量,po的场效应,智障的E-M电势,cogravitation,物质波,重力波效应和通过“ N”维轴的猜测。随着可行性的额外范围,严重的需求需要进一步确定诱导重量变化的变化,这可能会影响未来的空间推进概念的综合。提出的活动将执行实验以重现此数据。一旦实现了我们的目标,就是使用设备的更改版本进行另外三个实验,我们认为这将更大程度地影响可能减轻重量的磁性涡度。执行此实验数据后,我们想识别或验证设备为什么减肥的原因。该活动的工作时间为90美元。
𝑆𝑈(𝑁𝑁)仪表理论会经历反馈相变[1]。对这种过渡的非扰动研究从许多角度就可以对Yang-Mills理论的动力学有宝贵的见解。例如,一个人可以表征热力学可观察物的行为,这是颜色数量𝑁𝑁[2-4]的函数。早期宇宙中的一阶相变给引力波的烙印(例如参见参考文献。[5 - 8])。这打开了令人兴奋的可能性,即将重力波用作标准模型以外的物理探针的其他探针。除其他应用外,该程序与标准模型的扩展相关,该标准模型提出了HIGGS领域,新的Top-Quark合作伙伴或暗物质候选者的综合性质,例如基于𝑆𝑝(4)仪表理论的候选者,最近在数字上研究了,例如参考。[9 - 13]。要理解由给定理论中相变的引力波的强度,需要对相关可观察物的非扰动计算进行。在此贡献中,我们使用线性对数松弛(LLR)算法[14]在𝑆𝑈(3)Yang-Mills中报告了计算。对于该系统,最近在参考文献中提供了对潜热的高精度计算。[15]。使用与我们在这里讨论的类似方法的计算,但是在参考文献中讨论了靶标𝑆𝑈(4)。[16]。这项工作的一部分已在参考文献中报告。[17],我们将读者推荐给读者进行互补讨论。正在准备更广泛的出版物[18]。本工作的其余部分的结构如下。在教派中。2我们提供了晶格系统的描述,算法的博览会以及对数值实现的讨论。第3节报告了我们的数值发现。最后,我们的结论和未来工作的概述是在本节中给出的。4。
[42] Ra Y S,Dufour A,Walschaers M等。多模光场的非高斯量子状态[J]。自然物理学,2020,16(2):144-147。[43] Asavanant W,Yu S,Yokoyama S等。生成时间 - 域 - 多路复用两个维群集状态[J]。Science,2019,366(6463):373-376。[44] Larsen M,Guo X,Breum C等。确定性生成两个维簇状态[J]。Science,2019,366(6463):369-372。[45] Aasi J,Abadie J,Abbott B P等。使用挤压的光态[J]增强了LIGO重力波检测器的灵敏度。自然光子学,2013,7(8):613-619。[46] Yonezawa H,Furusawa A.连续 - 可变的量子信息处理,挤压光态[J]。光学和光谱学,2010,108(2):288-296。[47] Takeda S,Furusawa A.朝向大 - 比例断层 - 耐受性光子量子计算[J]。APL Photonics,2019,4(6):060902。[48]秦忠忠,王美红,马荣,等。压缩态光场及其应用研究[J]。激光与光电子学进展,2022,59(11):1100001。QIN Z Z,Wang M H,Ma R等。挤压光及其应用的进展[J]。激光和光电进度,2022,59(11):1100001。[49] Mari A,Eisert J.阳性Wigner函数呈现量子计算有效的经典模拟[J]。物理评论来信,2012,109(23):230503。[50] Xiang Y,Kogias I,Adesso G等。物理评论A,2017,95(1):010101。多部分高斯转向:一夫一妻制约束和量子加密应用[J]。[51] Xiang Y,Liu S H,Guo J J等。分销和
EE515:量子传感:机器学习,推理和信息单位:4时间:星期一,星期一2:00-3:50pm,位置:KAP 165讲师:Quntao Zhuang Office:PHE 606办公室:TBA办公时间:QZHUANG@USC.EDU CATALOG量子,量子信息,量子的基础,量级机械,量子的基础,量子的基础,量子的基础,量子的基础,量子,量子,量子,量子,量子,量子,量子,量子,量子量,量子量,量子和机器的基础,量子和机器的量度,量子和机器的量度为基础。课程描述是介绍量子传感的基础知识的4个单元课程---推理,信息和机器学习的量子理论。量子信息科学和工程在在计算,沟通和传感方面取得优于古典性能方面表现出了巨大的希望。传感是一个竞技场,量子技术可以在短期内实现用于实际应用的经典感应技术的优势。量子传感和计量学研究非经典资源来增强各种传感应用的测量表现。作为一个突出的例子,激光干涉仪重力波观测站(LIGO)将非经典挤压光注射到其米歇尔森干涉仪中,以超过由于激光射击噪声而超过标准量子限制(SQL)。除了LIGO外,量子计量学还在目标检测,显微镜,生物传感和相跟踪中得到了利用。最近,量子传感已在机器学习任务中发现了应用,例如使用智能量子传感器网络。本课程将介绍量子传感的理论基础,并在不同的实践感应场景中提供量子优势的规范示例。课程始于基本的量子力学,包括量子系统和以谐波振荡器建模的量子光学系统。然后,我们将涵盖经典推理和古典机器学习的基础知识,这是对此之后的量子版本的初步。最后,我们将讨论一些用于量子传感的物理系统。本课程将介绍基本的工具和方法,以建模和分析量子传感协议,并将其应用于现实示例。针对具有复杂线性代数知识的学生,本课程为学生提供了最新的量子传感概述,并为他们做好准备以进一步研究该主题。学习目标结束时,学生将能够
经典和量子信息可以进入黑洞的事件视野。然而,通常假定从后期出现的东西只是携带微小信息的热鹰辐射[1]。因此,当黑洞完全蒸发时,所有ingoing信息显然会永远消失。本质上是所谓的信息损失问题。图1和2中的Penrose图证明了这一点。图1描绘了一个固定的Schwarzschild(无旋转,未充电)黑洞。在这种情况下,奇异性是空间般的,很明显,从地平线内部传播的信息(沿空(或及时)的大地测量学传播无法到达外部宇宙。当黑洞蒸发时,情况不会改善,从同一图中的第二个图可以看出。类似地,图2显示了最大扩展旋转的kerr黑洞的penrose图,现在奇异性是及时的。在这种情况下,尽管信息(再次沿空射线传播)可以退出未来的视野,但仅仅是在另一个宇宙中出现的信息。换句话说,信息损失问题仍然存在于当前宇宙中。在这里可以注意两个点:i。旋转黑洞,带电的黑洞以及带电和旋转黑洞的penrose图实际上是相同的,ii。自然界中的所有黑洞(与其他天文学物体一样)都是旋转且未充电,并且发现零旋转的黑洞的概率实际上是零。明显的地平线是定时的。这得到了理论研究[2]以及最近的重力波和其他观察结果的支持[3,4]。1因此,以后我们只考虑旋转黑洞,只要它具有一定的角度动量,无论多么小,因果结构和我们的分析将在黑洞的寿命中保持有效。此外,除了在黑洞寿命的尽头,时空曲率很小,我们的结果很健壮且完全值得信赖。尤其是在本文中,我们表明,对于一个正在散发辐射的黑洞,有一个经典的通道可以通过该通道,并且遵循上述推理,它提供了从其内部恢复的信息延长的窗口。在此过程中,黑洞当然会收缩,但是由于信息和相关物质的额外流量,因此比鹰辐射的预测更快。我们还将在计算中允许非零电荷Q,因为这不会引起任何额外的并发症。我们通过为上述过程构造Penrose图来演示上述内容。并证明以下内容:1。立即围绕r = 0的区域是及时的,2。结果1和2意味着源自黑洞中心附近任何地方到明显的地平线的任何零用测量学。这反过来为经典或量子信息提供了从黑洞逃脱的途径。在任何试图解决信息损失问题的尝试中,必须考虑大量信息。最重要的是,逃避信息不是热的事实。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'