摘要:有能力找到任意复杂的对称性,机器学习(ML)增强量子状态层析成像(QST)的最佳拟合,已经证明了其在提取有关量子状态的完整信息方面的优势。我们通过直接生成目标参数来开发高性能,轻巧且易于安装的监督特征模型,而不是在训练截短的密度矩阵中使用重建模型。这样的基于特征模型的ML-QST可以避免处理大型希尔伯特空间的问题,但是CAB将特征提取高精度提取,从而捕获数据中的基础对称性。使用从平衡同源探测器生成的实验测量数据,我们比较了有关重建和特征模型预测的量子噪声挤压状态的退化信息;两者都与从协方差法获得的经验拟合曲线一致。具有直接参数估计的这种ML-QST说明了一个至关重要的诊断工具箱,用于使用挤压状态的应用,从量子信息过程,量子计量学,高级重力波检测器到宏观量子状态生成。
摘要:在此,我们开发了一个框架来理解第一部分中提出的观测结果。在这个框架中,由于随着水深 H 的减小幅度受限,内潮在变浅时会饱和。从这个框架可以推导出内潮平均能量的估计值;具体来说,能量 h APE i 、能量通量 h FE i 和能量通量发散 › xh FE i 。由于我们观察到耗散 h D i ' › xh FE i ,我们也将 › xh FE i 的估计值解释为 h D i 。这些估计值代表了内潮在内大陆架饱和时的能量参数化。参数化完全取决于深度平均分层和水深测量。总结一下,h APE i 、h FE i 和 › xh FE i 的跨陆架深度依赖性与冲浪区浅滩表面重力波的依赖性类似,这表明内陆架是内潮汐的冲浪区。针对一系列数据集对我们的简单参数化进行的测试表明,它具有广泛的适用性。
使用小型卫星进行低成本空间应用,高分辨率的地球观察,电磁波(X射线,红外线等)的观察器,从天体物体发出的电磁波(X射线,红外线等),甚至是从重力波的观察到。这些任务的推进系统要求包括较大的脉冲和功耗的全部冲动,高响应速度,3位数字投掷范围和低推力噪声。1)以低推进剂和功耗的大量总脉冲,具有发射阴极的离子元素适合作为主要推进系统。对于小型卫星应用,2)功耗是一个重要因素。是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。 它也不涉及容易产生故障的部件,例如阀门和质量流控制器。 电流密度是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。它也不涉及容易产生故障的部件,例如阀门和质量流控制器。电流密度
执行摘要:映射到 EMPIR 支柱 重大挑战:原子频率标准 (AFS) 和时间和频率传输 (TFT) 在网络同步和监控(例如智能电网)以及地面和太空环境监控等应用中都发挥着重要作用。研究和开发涉及欧洲工业和许多大学机构,可能比直接涉及 NMI 的还多。创新:鉴于欧洲卫星导航系统 Galileo 和增强系统 EGNOS 的持续运行和升级,预计对先进 AFS 的需求将非常强烈,优先来自欧洲生产。地球探索和基于位置的服务除了其科学参与(气候监测、大地测量)之外,还发现了商业利益,这种趋势将继续下去。基础科学:时间是基本物理维度之一,也是可以最高精度测量的物理量。因此,时钟和频率标准在物理学基本原理的定量测试中发挥重要作用也就不足为奇了。量子力学的发展很大程度上依赖于该理论在解释原子光谱的微妙特征方面的成功。其他需要不断改进 AFS 和 TFT 的科学领域包括大地测量学、射电天文学、太空探索、重力波探测。总之,未来的欧洲研究计划必须寻求
拖曳船上和系泊观测表明,内部重力波越过帕劳北部热带西太平洋海域海面以下 1000 米的高大超临界海底山脊。背风波或地形弗劳德数 Nh 0 / U 0(其中 N 为浮力频率,h 0 为山脊高度,U 0 为远场速度)介于 25 和 140 之间。波浪是由潮汐和低频流叠加产生的,因此具有两个不同的能量源,组合振幅高达 0.2 ms 2 1 。波浪的局部破碎导致湍流动能耗散率增强,在靠近地形的山脊背风处达到 10 26 W kg 2 1 以上。湍流观测显示大潮和小潮条件形成鲜明对比。大潮期间,潮汐流占主导地位,湍流在海脊两侧分布大致相等。小潮期间,平均流占主导地位,相对于平均流,湍流主要出现在海脊下游一侧。海脊对水流施加的阻力估计为 O (10 4 ) N m 2 1(每次穿越海脊时),以及相关的功率损失,为低频海洋环流和潮汐流提供了能量吸收。
摘要。观察性研究表明,厄尔尼诺 - 南方振荡(ENSO)对准生物振荡(QBO)发挥了影响。QBO的向下传播分别在厄尔尼诺和拉尼娜期间倾向于加速和减速。一般循环模型的最新结果表明,QBO的ENSO调制需要相对较高的水平分辨率,并且它在具有参数化但时间恒定的重力波源的气候模型中不会显示。在这里,我们证明了NASA戈达德太空研究研究所(GISS)E2.2模型可以捕获观察到的QBO周期的ENSO模型,并以2°纬度的水平分辨率乘以2.5◦经度,但其重力波源被参与参数化。这是因为Elniño事件导致更剧烈的重力波源在赤道带上产生更绝对的动量流动,并且通过弱化的Walker Crockulation的弱化,这些波的过滤到热带下层平流层中。ENSO系统的各种组成部分,例如海面温度,对流活动和助行器循环,与参数化重力波的产生和传播密切相关,通过该引力波的产生和传播,ENSO通过该QBO在GISS E2.2模型中调节QBO时期。
摘要:我们考虑了通货膨胀背景中的Bardeen-Cooper-Schrieffer(BCS)类似模型。我们表明,凭借轴向化学势,有吸引力的四分之一的效率自我相互作用会导致BCS样冷凝。在通货膨胀的刚性保姆(DS)限制中,从而忽略了来自加速器和重力的反应,我们进行了第一次计算非扰动有效潜力的第一次计算,该计算包括在具有化学电位的情况下进行全空间曲率效应,这取决于均衡的有效性,其有效性已通过Ginzburg creterion进行了检查。当变化的哈勃被解释为DS时空的有效长臂猿温度时,相应的BCS相变始终是一阶。在凝结的阶段,该理论可以分别从紫外线和红外侧理解为费米子和骨气。这导致了曲率扰动的原始非高斯性非高斯性的独特特征。也就是说,振荡性宇宙对撞机信号以有限的动量比平稳关闭,因为不同的动量比有效地探测了不同的能量尺度。此外,此类BCS相跃迁还可以采购随机重力波,这对于将来的实验是可行的。
我们调查了一阶电子期过渡(FOEWPT)的影响,这是electroweak baryogenogeny的先决条件之一,对暗物质(DM)在复杂的Z 3- Z 3- iNmult distrient distrient distrient dismult dismult distrient dise demult distrient the Plassition之前冻结的热物质(DM)的影响,该模型不像中微子质量和宇宙的重子不对称。由于熵释放,围绕电动量表周围的这种相转变对遗物密度产生了影响,尤其是对于TEV规模的DM。因此,我们集中于上述模型的参数空间区域,该区域有利于早期宇宙中的泡沫,并且DM很重,因此其冻结温度比相变温度大。我们进一步研究了DM遗物密度对模型参数的稀释因子的依赖性,成核温度,强度和相变的持续时间。这样的稀释可能会检索一些参数空间的某些区域,这些区域先前由DM遗物密度的测量值和/或DM直接检测实验的最新约束所排除。此外,由于泡沫的结果,在稀释因子和随机重力波的产生之间达到了直接连接。
内大陆架是冲浪区和中大陆架之间的区域,表面和底部边界层 (BBL) 在此汇合甚至重叠 ( Lentz 1994 )。在这里,横岸风有助于跨内大陆架的输送 ( Fewings 等人 2008 ),而中大陆架的输送则由埃克曼动力学引起的沿岸风驱动。内大陆架的另一个先前未研究过的显著特征是,内大陆架是内潮汐几乎失去所有能量的区域。后者是我们在这里的重点,并引出了内大陆架作为内潮汐冲浪区的作用的新区分 ( Becherer 等人 2021 ,以下简称第二部分 )。这种内部冲浪区,其中内部潮汐以受水深限制的饱和状态存在,具有与表面重力波冲浪区类似的特征(Thornton 和 Guza 1983;Battjes 1988)。内部潮汐要么在当地产生(Sharples 等人 2001;Duda 和 Rainville 2008;Kang 和 Fringer 2010),要么在传播路径较长的偏远地区产生(Nash 等人 2012;Kumar 等人 2019),将大量能量传输到内架(Moum 等人 2007b;Kang 和 Fringer 2012)。在这里,能量被湍流耗散,产生斜压混合,从而导致水体转化。在内架上,内部潮汐在驱动
精心收集的机载图像显示出能够看到水面特征以及浅水底特征(例如水下植被和人造目标)。传统的摄影测量图像和机载数字图像都因多种因素而导致图像清晰度下降,包括毛细管波和小重力波、水柱或原位成分。在机载或原位地下图像采集过程中部署水下和地面人造校准目标,为校正图像以改善地下和地面特征及其检测奠定了初步基础。所介绍的方法以及 490 nm、532 nm 和 698-700 nm 的图像清楚地显示了浅水区的地下特征。所采用的技术包括使用大画幅相机和摄影测量胶片以及特殊滤光片(例如 Wratten # 70),以便在植物“红边”附近提供更窄的光谱特征,以用于改善对高光谱推扫式图像的解释。来自多个传感器和平台(包括自主水下航行器)的组合图像构成了数据融合的基础,用于自动提取水面和地下特征。来自新型高光谱成像系统的数据展示了亚米级高光谱图像在地下特征检测中的实用性。