•转向镜和检测器之间的光距离:对于较大距离的精度较高。因此,应选择较大的距离。第一个转向镜应靠近波动源。•光束直径:具有相同的激光束位置的绝对变化,较小的直径会导致4 QD象限的功率差异更强,因此会导致更陡峭的控制信号。这就是为什么直径较小的激光束可以以较高的精度定位。•强度:检测器的分辨率进一步取决于击中敏感区域的强度。这可以通过适当的光学过滤器选择和电子方式进行优化(另请参见第5.5节)来改变。•重复率和脉冲持续时间:可以针对不同的激光参数优化控制器带宽。较高的带宽导致更快的反应,因此在快速波动的情况下,精度更高。
简介 - DNA指纹是一种革命性的分子技术,用于根据其独特和变异的遗传模式来识别个体。通过DNA指纹识别,我们发现基因组中卫星DNA区域之间的差异。这些卫星DNA区域是重复的DNA的拉伸,未针对任何特定蛋白质编码。它们以丰富的形式存在,并用于人类的DNA分析,因为它们描绘了很高的多态性,并且已知是DNA指纹的基础。这项技术是由Alex Jeffrey在1984年发现的,自发现以来,已彻底改变了法医学,父亲鉴定,医学诊断和进化研究。DNA指纹识别的另一个名称是DNA分析,因为它根据脱氧核糖核酸DNA的特定区域中的独特基因组成来识别个体,特别是短串联重复率。有几种可以在限制片段长度的帮助下用于DNA Brina的方法
我们从理论上研究了在二维微阱结构中使用快速脉冲双量子比特门进行离子捕获量子计算。在一维中,这种快速门在最近邻居之间使用时是最佳的,并且我们研究了将其推广到二维几何结构。我们证明,快速脉冲门能够以比捕获周期更快的速度在相邻陷阱中的离子之间实现高保真度纠缠操作,并且实验证明了激光重复率。值得注意的是,我们发现,在不增加门持续时间的情况下,即使在具有数百个离子的大型阵列中也可以实现高保真度门。为了证明该建议的实用性,我们研究了这些门在 40 模式费米-哈伯德模型的数字模拟中的应用。这也说明了为什么连接任意离子对所需的较短门链使这种几何结构非常适合大规模计算。
利用半导体制造技术制造的光子纳米结构中的粒子加速器,并由超快固体激光器驱动,这是开发未来紧凑型粒子加速器的一种全新且很有前途的方法。近年来,在大学、国家实验室和公司的日益增多的国际合作的推动下,该领域取得了实质性进展。这些微型加速器装置的性能最终受到激光诱导材料击穿极限的限制,对于光驱动电介质来说,该极限可能比现代粒子加速器中传统使用的射频金属腔高得多,从而使可实现的加速场提高 1 到 2 个数量级。这种方法所需的激光器已在市场上销售,具有中等(微焦耳级)脉冲能量和 MHz 级重复率。我们总结了迄今为止的进展,并概述了潜在的近期应用和分支技术。
摘要 开发用于量子处理器远程纠缠的网络是量子信息科学领域的一项突出挑战。我们提出并分析了一种用于中性原子量子计算机远程纠缠的双物种架构,该架构基于光学捕获原子量子比特阵列与用于光子收集的快速光学器件的集成。其中一种原子用于原子-光子纠缠,另一种原子用于局部处理。我们比较了两种光学方法可实现的远程纠缠生成速率:使用透镜的自由空间光子收集和近同心、长工作距离谐振腔。腔内的激光冷却和捕获消除了从源区域机械传输原子的需要,从而可以实现快速的重复率。使用优化的腔精细度值,预测在实验可行参数下远程纠缠生成速率 > 10 3 s − 1。
摘要。随着未来几年许多研究反应堆的逐步淘汰,小型和中型中子源的不足是可以预见的。激光驱动的中子源有可能填补这一空白,过去几年激光技术取得了巨大进步。即将推出的具有高达 10 Hz 重复率的拍瓦激光器有望大幅提高中子通量。本文开发并优化了一种装置,用于在激光驱动的中子源上进行中子共振光谱分析。然后在 PHELIX 激光系统的实验活动中对该装置进行了评估。激光强度高达 10 21 W/cm²,ns 预脉冲对比度为 10 -7,用于离子加速,结果为 (1.8±0.7)×10 8 N/sr/脉冲,相当于 4 当量的 (2.3±1.0)×10 9 N。这些脉冲经过调节、准直,并通过飞行时间法进行研究,以表征热中子谱以及信噪比。
执行Attosond-Pump Attosent-probe光谱(APAPS)的能力是超快科学的长期目标。第一次开创性的实验证明了APAP的可行性,但重复率较低(10至120 Hz),并且现有设置的大量足迹迄今妨碍了对APAP的广泛利用。在这里,我们使用1 kHz的商业激光系统,在空心核心纤维中直接压缩后进行了两种座椅,以及紧凑的高谐波生成(HHG)设置。后者可以通过使用过量的HHG几何形状并利用HHG培养基中驱动激光器的瞬时蓝光来实现强烈的极端脉络膜(XUV)脉冲的产生。产生了近距离的脉冲,如一色和两色Xuv-Pump Xuv-probe实验所证明的那样。我们的概念允许在许多实验室的极短时间内进行选择性抽水和探测,并允许对其他泵种技术无法访问的基本过程进行调查。
捕获离子是激发离子运动的弱力和电场的灵敏探测器。这里报告了与施加的弱外力相位一致的捕获离子晶体质心运动的测量结果。这些实验是在大约 100 个离子的二维捕获离子晶体上远离陷阱运动频率进行的,并确定了我们的协议的基本测量不精确度,不受与质心模式相关的噪声的影响。通过使用振荡自旋相关光偶极力将离子晶体运动与离子的内部自旋自由度耦合来检测晶体的驱动正弦位移。由此产生的诱导自旋进动与晶体的位移幅度成正比,并以近投影噪声限制的分辨率进行测量。在一次实验测定中检测到 49 pm 的位移,信噪比为 1,这比以前的相位不相干实验提高了一个数量级。该位移幅度比零点波动小 40 倍。在我们的重复率下,8 。4 pm / √
光子晶体光纤 (PCF)(一种沿其长度方向具有复杂空心通道阵列的细玻璃丝)自 20 世纪 90 年代问世以来,开创了线性和非线性光纤光学的新时代。除了可以前所未有地控制色散和双折射之外,它们还可以用于实心玻璃和空芯。它已出现许多应用,例如:通过压力可调色散,充气空芯 PCF 可以巧妙地将脉冲压缩为单周期持续时间,并支持一系列独特的可调深紫外和真空紫外光源;手性 PCF 具有圆和拓扑双折射特性,可支持光学涡旋,在某些情况下还支持强圆二向色性;光学捕获在空芯 PCF 内部的微粒可用于以高空间分辨率感测物理量;实芯PCF中的强光机效应允许在几GHz重复率下实现稳定的时间调制高次谐波锁模。
泵浦固态 (DPSS) 主振荡器放置在密封的单片块中,产生高重复率脉冲串 (90 MHz),单脉冲能量低至几 nJ。二极管泵浦放大器用于将脉冲放大至 30 mJ 或高达 40 mJ 的输出。高增益再生放大器的放大系数接近 10⁶。在再生放大器之后,脉冲被引导至多通功率放大器,该放大器经过优化,可从 Nd:YAG 棒中高效提取存储的能量,同时保持近高斯光束轮廓和低波前畸变。输出脉冲能量可以大约 1% 的步长进行调整,而脉冲间能量稳定性在 1064 nm 时保持在小于 0.5% rms。安装在恒温炉中的角度调谐 KD*P 和 KDP 晶体用于第二、第三和第四谐波的产生。谐波分离器保证引导至不同输出端口的每个谐波具有高频谱纯度。