在过去的几十年中,全球自身免疫性疾病的流行迅速增长。越来越多的证据将肠道营养不良与各种自身免疫性疾病的发作联系起来。由于高吞吐量测序技术的显着进步,肠道微生物组研究的数量有所增加。但是,它们主要集中在细菌上,因此我们对人肠道微生物生态系统中真核微生物的作用和意义的理解仍然非常有限。在这里,我们选择了Graves疾病(GD)作为一种自身免疫性疾病模型,并研究了肠道多杀伤力(细菌,真菌和生物学家)从健康控制,患病和药物治疗的康复患者中的微生物群落。结果表明,GD中的生理变化增加了细菌社区组装的分散过程,并增加了真核社区组装的均匀选择过程。恢复的患者与健康对照组具有相似的细菌和原生动物,但没有真菌的社区组装过程。此外,与细菌相比,真核生物(真菌和生物学家)在肠道生态系统功能中起着更重要的作用。总体而言,这项研究简要了解了真核生物对人类肠道和免疫稳态的潜在贡献及其对治疗干预措施的潜在影响。
摘要实践课在生物学研究中非常重要,特别是在细胞学学科中,由于其抽象性质而常常被视为具有挑战性。仅有理论是不够的,必须将理论知识与实践经验相结合,才能激发学生对科学的兴趣。这项研究是在农业综合高中一年级学生中进行的,学生们在进行 DNA 提取实验(涉及收集唾液)之前接受了 DNA 的理论基础。这项工作旨在表明 DNA 研究是理解生物学的重要工具,以及 DNA 提取实验对大多数高中生有何相关性和益处。
溶酶体是参与各种生理和病理过程的细胞内消化细胞器,包括调节免疫检查点分子,肿瘤微环境中的免疫细胞功能,抗原呈递,代谢和自噬。溶酶体的异常或功能障碍与肿瘤的发生,发育和耐药性有关。溶酶体起着至关重要的作用,并且在肿瘤免疫疗法中具有潜在的应用。靶向溶酶体或利用其特性是肿瘤免疫疗法的有效策略。然而,目前尚不完全了解与肿瘤免疫疗法中与溶酶体有关的机制和方法,需要进一步的基础和临床研究来为癌症患者提供更好的治疗选择。本综述着重于与溶酶体和肿瘤免疫疗法有关的研究进度
储备银行公共教育计划的核心目标之一是提高经济素养。虽然经济素养的社会效益已得到充分证实,但定义这一术语的含义却并非易事,几十年来一直是争论的焦点。本文探讨了“经济素养”的含义。为了得出一个可行的定义,本文讨论了一个人应该理解哪些经济原则才能被视为具有经济素养,以及他们应该熟悉的主题和我们期望他们表现出的思维方式。在此过程中,本文区分了经济素养和金融素养。本文最后提出了未来研究的问题,即如何衡量澳大利亚的经济素养以及如何支持它。
COVID 大流行暴露了 T 细胞在初始免疫、建立和维持长期保护以及对新型病毒变体的持久反应中发挥的关键作用。越来越多的证据表明,增加细胞免疫措施将填补疫苗临床试验中的一个重要知识空白,可能有助于提高下一代疫苗对当前和新出现的变体的有效性。在 II 期试验中进行深入的细胞免疫监测,特别是针对老年人或免疫功能低下等高风险人群,应该能够更好地了解建立有效长期保护的动态和要求。此类分析可以产生细胞免疫相关性,然后可以使用适当的可扩展技术将其部署到 III 期研究中。作为临床免疫的相关性,细胞免疫的测量不如抗体那么确定,而且关于细胞免疫监测的实用性、成本、复杂性、可行性和可扩展性仍然存在一些误解。我们概述了目前可用的细胞免疫检测,回顾了它们在临床试验中的使用准备情况、它们的后勤要求以及每种检测产生的信息类型。目的是提供可靠的信息来源,以便利用该信息来源制定疫苗开发过程中全面免疫监测的合理方法。
本交换要约及同意征求(定义见下文)仅适用于现有票据的持有人,该等持有人 (1) 为根据美国 1933 年证券法(经修订)(“证券法”)第 144A 条定义的“合格机构买家”(“QIBS”),在依据证券法第 4(A)(2) 条规定的注册豁免而进行的私人交易中;或 (2) 为除“美国人士”(定义见证券法第 902 条,“美国人士”)以外的人士,且并非美国境内的人士。根据《证券法》第 S 条例在离岸交易中为美国个人的账户或利益购买新债券,且该等人士并非美国合格受要约人(定义见“转让限制”),在每种情况下,该等人士接收并审阅交换要约及同意征求备忘录以及参与交换要约及同意征求均在适用任何司法辖区的法律和法规下获准。
摘要:人工智能技术的进步既是近五十年来技术发展的一部分,也是技术发展的结果。信息技术的快速变化和变革给当今世界的所有关系带来了深刻的冲击,机器学习等信息技术的突破性技术进步不仅给政府机构和组织留下了深刻印象,也影响了商业世界。人工智能技术是为了执行人类可以完成的任务而开发的,它也进入了人类智能占主导地位的安全和情报领域。因此,就像在生活的各个领域一样,情报收集和生产将开始自动化。这种情况在许多方面带来了机遇,但也包含着危险和威胁。本研究的目的是向对这一领域感兴趣的读者介绍人工智能在技术和安全领域的应用和重要性。本研究采用了定性和解释性研究方法。本研究在技术与安全关系的背景下处理人工智能这一术语的历史进程,并评估其在当今情报分析中的应用可能性。并试图通过提出一种名为“情报工程”的新职业来解释人工智能在当今情报中使用的可能性。
1译者注:中文术语可以将英语翻译成“人工通用情报”(AGI)或“通用人工智能”(简称“通用AI”)。这种翻译选择“通用AI”,因为当中国作家使用该术语通用人工智能时,通常是指广泛的AI形式,而不是像Agi所暗示的那样类似于人类认知的AI。有关此术语的更全面讨论,请参见Wm。C. Hannas,Huey-Meei Chang,Daniel H. Chou和Brian Fleeger,“中国的高级AI研究:监视中国通往“一般'人工智能的途径”,“人工智能中心”,“安全与新兴技术中心”,2022年7月7日,2022年,HTTPS://CSET.GEORGETONTOWN.GEORGETOWN.GEORGETONTOWN.EDUE/PUBLITICA/CHINAS-CUBUBLICATION/CHINAS-EREVENG 1-3。1-3。
真菌对磷酸盐的溶解是陆地生态系统养分循环的重要过程,尤其对于植物生长发育必需的元素磷的可用性而言。磷通常以不溶性形式存在于土壤中,例如铁、铝和钙的无机磷酸盐,这限制了植物根部对其的吸收。然而,磷酸盐溶解真菌能够通过分泌有机酸和磷酸酶将可用的磷酸盐释放到环境中,将这些不溶性形式转化为植物可利用的磷酸根离子。该机制不仅在植物营养方面发挥着关键作用,而且在陆地生态系统的可持续性方面也发挥着关键作用,有助于有效的磷循环和提高农业生产力。本研究的目的是通过巴西亚马逊西部微生物收集中心的三种具有散生菌目形态特征的真菌菌株,对不同磷酸盐源的溶解能力进行分子鉴定和表征。首先,重新激活这些细胞系,并使用 2% CTAB 方法进行 DNA 提取。接下来,进行 CaM(钙调蛋白)区域的扩增,作为物种鉴定的分子标记,然后进行测序和系统发育分析。为了确保分析的稳健性,基于相关物种序列的比对,采用了最大似然法,并进行了 1000 次重复。为了评估无机磷酸盐的溶解潜力,在含有三种不同形式的不溶性磷酸盐的培养基中对分离物进行体外定性测试:磷酸铁(FePO₄)、磷酸铝(AlPO₄)和磷酸钙(Ca₃(PO₄)₂)。将真菌在28°C的恒温下培养四天。磷酸盐的溶解度通过溶解指数来量化,该指数是一个参数,表示真菌在培养基中在其菌落周围产生溶解晕的能力。该指数是根据溶解晕的直径与真菌菌落直径的比率计算得出的。系统发育分析证实,所研究的三种菌株属于 Talaromyces sayulitensis 种。在进行的测试中,Talaromyces sayulitensis 菌株表现出溶解不同来源的无机磷酸盐的高潜力,在所有测试介质中呈现溶解晕。在含有磷酸铝(AlPO₄)的培养基中观察到最高的溶解率。这些结果表明,Talaromyces sayulitensis 具有显著的溶解各种形式磷酸盐的能力,作为一种有前途的生物技术工具,它可以提高贫瘠土壤中磷的利用率,促进植物生长,并有助于可持续农业实践。
