量子力学是物理学中的一种理论,它描述了原子和亚原子尺度上物质和能量的行为。将经典力学与量子力学进行比较,可以得出两个主要思想。首先,经典状态描述与量子状态描述有着根本的不同。在经典世界中,系统的状态可以用位置和动量的精确值来描述。另一方面,量子物理学使用波函数来描述状态,波函数可以表示位置和动量等可观测量的测量结果的概率。其次,在经典领域,每个粒子的行为及其与其他粒子的相互作用都是可预测的。更重要的是,如果对粒子进行两次测量,实验结果(如果粒子没有被修改)在整个时间内都是不变的。然而,量子物理学是非直观的。状态和测量之间的关系是不确定的,并且会随着时间而变化。如果对一个粒子进行两次测量,得到的结果可能是随机的和意想不到的。因此,量子力学是非确定性的,这意味着它不能完全精确地描述物理系统的行为(是概率性的)。
摘要 光的量子特性使革命性的通信技术成为可能。推进这一研究领域的关键是清晰地理解状态、模式、场和光子的概念。场模式的概念源自经典光学,而状态的概念在以量子力学的方式处理光时必须仔细考虑。术语“光子”是一个重载标识符,因为它通常用于指代量子粒子或场的状态。这种重载通常不结合上下文使用,可能会混淆描述我们测量的现实的物理过程。我们使用现代量子光学理论回顾了这些概念之间的用法和关系,包括光子波函数的概念,该概念的现代历史由 Iwo Białynicki-Birula 在本期刊上发表的一篇开创性论文推进,本文就是向他致敬。 1. 简介 在开始研究量子光学时,很自然地会问:“什么是光子?”但也许更好的问题是:“什么是量子场?”鉴于量子理论与我们赋予该理论的数学元素的名称无关,那么我们如何命名和解释它们何时重要呢?在没有完整的数学解决方案的情况下,尝试对问题建立直觉时,正确地概念化和命名理论元素会有所帮助。这篇献给 Iwo Białynicki-Birula 教授的特刊以教程的方式回顾了状态、模式、场和光子在量子光学中的作用,承认了他对该主题的重要贡献。i 我们希望启发那些可能刚进入该领域的研究人员,例如那些在经典网络领域工作并且现在开始考虑量子网络潜在有用应用的研究人员。我们回顾了光子波函数的概念,它的现代历史大致始于 Białynicki-Birula 在本期刊上发表的一篇论文 [1] 和 John Sipe [2] 的一篇同期论文。状态、模式和场是适用于经典和量子领域的概念。本文以教学的方式回顾了这些概念在两个领域中的产生和定义,描述了电磁场激励的量化如何引入新的(可测量的)行为,并阐明了两个领域之间的联系。
我们关注的是在某些现实条件下对量子光电电路的数值模拟,也可以说明光子量子状态并非完全没有区别。部分光子可区分性在实施光学量子信息处理方面有一个严重的限制。为了正确评估其对量子信息协议的效果,准确模拟的准确数值模拟(密切模仿量子电路操作)至关重要。我们的特定目的是提供针对局部光子可区分性的计算机实现,该分子可区分性,原则上适用于用于理想量子电路的现有仿真技术,并避免对其显着修改的需求。我们的方法基于革兰氏式正统计过程,这非常适合我们的目的。光子量子状态由波袋表示,其中包含有关其时间和频率分布的信息。为了说明部分光子的区分性,我们扩大了与电路操作相关的自由度的数量,扩大了光子通道的定义,以结合波袋的自由度。此策略允许在与线性光学元素相同的基础上定义延迟操作。
摘要。量子信息作为一种可行技术的兴起需要适当的教学课程来为未来的劳动力做好准备。量子信息的基础关键概念涉及量子力学的基本原理,例如叠加、纠缠和测量。为了补充向新兴劳动力教授量子物理的现代举措,需要实验室经验。我们开发了一套量子光学实验课程,以教授量子力学基础和量子代数。这些实验室在桌面上提供光学元件的动手实验。我们还为教师创建了课程材料、手册、教程、零件和价格表。仪器的自动化提供了远程使用仪器的灵活性,并允许更多学生通过单一设置进行访问。
摘要。罗彻斯特大学 (UR) 的量子光学/量子信息和纳米光学教育实验室设施 (QNOL) 位于光学研究所的三个房间内,总面积为 587 平方英尺。15 年来,它每年用于教授 4 学分的 QNOL 课程。准备了四个教学实验室,用于产生和表征纠缠和单个(反聚束)光子,展示量子力学定律:(1) 纠缠和贝尔不等式,(2) 单光子干涉(杨氏双缝实验和马赫-曾德干涉仪),(3) 单光子源 I:单个纳米发射器的共焦荧光显微镜,以及 (4) 单光子源 II:汉伯里布朗和特威斯装置,荧光反聚束。此外,基于 QNOL,开发了 1.5 到 3 小时的坚固量子“迷你实验室”,并引入必修课程,以便 UR 的所有光学专业学生都拥有使用量子实验室的经验。门罗社区学院 (MCC) 的学生参加了 UR 的两个迷你实验室。自 2006 年到 2022 年春季,共有约 850 名学生使用实验室提交实验报告(包括 144 名 MCC 学生),超过 250 名学生使用它们进行实验室演示。此外,UR 新生研究项目已成为该设施中一项非常重要的教育活动。所有开发的材料和学生报告均可在 http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ 获得。我们介绍了坚固耐用、普遍可及的实验,这些实验可以引入单独的高级课程或有大量学生的课程。讨论了评估方法、学生知识评估以及他们对量子信息职业的态度。© 2022 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1.OE.61.8.081811]
团队专注于原子、分子和光学物理领域的前沿研究,包括但不限于量子光学-原子光学和量子计量学。已发展了原子和光的量子调控、量子关联干涉、量子增强传感和超越传统技术的精密测量等多个研究方向。该团队正在与华东师范大学和上海交通大学联合组建。目前,团队由 5 名教授、3 名副教授、2 名助理教授和 4 名博士后组成,其中包括 1 名国家杰出青年科学基金获得者等。此外,还获得过饶玉泰物理学奖、上海市自然科学奖一等奖等多项奖项。
这些是我在上海交通大学致远学院教授的一门课程的讲义(可在 www.youtube.com/derekkorg 上找到),尽管第一稿是为我在德国埃尔朗根-纽伦堡大学教授的上一门课程而写的。它是为只接受过量子力学基础培训的学生设计的,因此,该课程适合各个层次的人(例如,从本科毕业一直到博士阶段)。这些笔记还在进行中,这意味着一些证明和许多图表仍然缺失。然而,我已尽我所能,以这样一种方式编写所有内容,即使有这些缺失的部分,读者也可以自然地理解所有的论证和推导。另外,还剩下几章需要添加,其中一章是关于分析开放系统动力学的数学方法,另一章介绍了目前大量实验平台,这些笔记中开发的工具和想法目前正在这些平台上实施。首先,我先说几句关于讲座主题的话。量子光学研究光与物质之间的相互作用。我们可以将光视为电磁波谱的光学部分,将物质视为原子。然而,现代量子光学涵盖了各种各样的系统,因此更及时的定义可能是“低能量子电动力学”。这种情况包括,例如,超导电路、受限电子、半导体中的激子、固态缺陷或微观、中观和宏观系统的质心运动。此外,量子光学是呈指数级增长的量子信息处理和通信领域的核心,无论是在概念层面还是在技术实现层面。量子光学中发展起来的思想和实验也让我们能够重新审视与凝聚态物理甚至高能物理相关的多体问题。此外,量子光学有望在桌面实验中检验量子力学以及标准模型以外的物理学的基本问题。量子光学的显著特点之一是它处理的是非孤立系统,即它们会向周围环境泄漏能量和信息。虽然这实际上是真实物理系统中最常见的情况,但这并不是学生在标准量子力学课程中通常遇到的情况。本课程的很大一部分致力于填补这一空白:它介绍了许多用于描述开放量子光学系统的工具和方法。除了实际用途之外,这些方法还具有深刻的物理解释,使学生更好地理解量子力学。因此,量子光学和开放系统是未来量子物理学研究人员不容错过的课题。我必须强调,为了成长为一名优秀的量子物理学家,尽可能多地阅读这些主题的资料非常重要。因此,我总结了一份参考文献清单,这些参考文献在我职业生涯的不同阶段都非常有用 [ 1 – 21 ]。最后,我要感谢过去几年仔细阅读这些讲义并帮助我完善讲义的许多学生,以及提出改进建议或将其传播给学生的几位同事。
您的个人资料: 完成大学物理学学习(理学硕士),成绩优于“良好”(德国标准)。 量子力学知识扎实 量子信息处理基础知识 成功参与上述项目的关键是对手头任务的高度兴趣、非凡的奉献精神和主动性。 愿意在物理学、计算机科学、数学和电气工程领域的跨学科团队中工作。 我们重视以下一个或多个领域的知识:实验量子光学、激光光谱和冷却、原子物理学、微波技术、激光技术、光学、真空技术、控制电子学或实时控制。 非常好的英语水平
1 林茨 ELLIS 部门,LIT AI 实验室,机器学习研究所,约翰内斯开普勒大学,4040 林茨,奥地利;brandstetter@ml.jku.at (JB);kofler@ml.jku.at (JK);hochreit@ml.jku.at (SH) 2 奥地利科学院量子光学与量子信息研究所与维也纳大学维也纳量子科学与技术中心,1090 维也纳,奥地利;manuel.erhard@univie.ac.at 3 多伦多大学化学系与人工智能矢量研究所,多伦多,ON M5G 1M1,加拿大; mario.krenn@univie.ac.at 4 多伦多大学计算机科学系和人工智能矢量研究所,加拿大安大略省多伦多 M5G 1M1 5 人工智能高级研究所 (IARAI),Landstraßer Hauptstraße 5, 1030 Vienna,奥地利 * 通讯地址:adler@ml.jku.at † 当前地址:Quantum Technology Laboratories GmbH,Wohllebengasse 4/4, 1040 Vienna,奥地利。‡ 当前地址:马克斯普朗克光科学研究所,91058 埃尔朗根,德国。§ 当前地址:阿姆斯特丹大学理学院信息学研究所,1090 GH 阿姆斯特丹,荷兰。