(注:该项目可能需要获得当地政府的无人机操作官方许可,请确保在项目的后续阶段不会遇到此类问题) 主题 3. 智能地理信息系统开发 该系统将基于卫星图像、地图、人工智能方法的统计数据分析,用于城市发展预测,因为其研究成果以后将适用于洪水估计,这对英国或世界任何关键地区的房地产市场都有重要的经济意义。预计在本研究中开发的任何预测系统都可能具有房地产和住房市场的市场潜力。(例如用于财产价值评估) 主题 4. 医疗健康应用(医学成像、红外成像、疾病或异常检测的组织/皮肤纹理分析)。我们的新方法“智能激光散斑分类”广泛用于从皮肤图像中检测健康异常。 (例如糖尿病等)有关更多信息,请访问:https://en.wikipedia.org/wiki/Intelligent_laser_speckle_classification 主题 5. 工业应用(产品检测的视觉系统、机器人视觉、物体跟踪、纹理分析、航空航天/汽车工业的 3D 成像、物理现象建模等) 主题 6. 生物细胞 - 化学物质通信解码 生物信息学的这个主题涉及在基础层面上解码细胞或细菌或药物之间的“通信语言”,并在进一步阶段了解它们的隐形策略以制定对抗疾病的对策。对于这种研究,使用了一些微观视频录制应用程序和 AI 软件。 主题 7. 计算量子物理与光学
我们关注的是在某些现实条件下对量子光电电路的数值模拟,也可以说明光子量子状态并非完全没有区别。部分光子可区分性在实施光学量子信息处理方面有一个严重的限制。为了正确评估其对量子信息协议的效果,准确模拟的准确数值模拟(密切模仿量子电路操作)至关重要。我们的特定目的是提供针对局部光子可区分性的计算机实现,该分子可区分性,原则上适用于用于理想量子电路的现有仿真技术,并避免对其显着修改的需求。我们的方法基于革兰氏式正统计过程,这非常适合我们的目的。光子量子状态由波袋表示,其中包含有关其时间和频率分布的信息。为了说明部分光子的区分性,我们扩大了与电路操作相关的自由度的数量,扩大了光子通道的定义,以结合波袋的自由度。此策略允许在与线性光学元素相同的基础上定义延迟操作。
人工智能 (AI) 的最新进展为科学问题带来了新的解决方案。然而,要充分利用这些工具的潜力,人类研究人员必须理解 AI 生成的提案以推断研究结果,而当前的算法并不适合这项任务。为了帮助研究人员分析复杂的 AI 生成的解决方案,我们推出了 AriadneVR,这是一个用于图形可视化和操作的沉浸式虚拟现实 (VR) 环境。具体来说,我们的工具使用彩色加权图来抽象表示量子光学实验。为了展示我们软件的优势,我们提出了一种新的资源高效的三维纠缠交换方案和三维 4 粒子 GHZ 状态分析仪。我们的结果显示了 VR 可以增强研究人员从基于图形的生成 AI(一种科学中广泛使用的数据表示)中提取知识的能力。
在此期间,实用工作通常在物理课程中使用,以使学生参与积极的学习和观察过程[3]。量子光学实验的问题是,由于它们的复杂性很高,对光学调整的敏感性,它们很难在教室中部署,并且由于使用电光系统和激光器而可能构成安全问题。它们通常非常昂贵,并在远离教室的“研究”环境中部署。在实验会话中,学生的操作通常仅限于对光学组装的选定部分进行微调以减轻任务的复杂性。实验的一般图片通常会丢失,因为学生仅尝试整个现象的一小部分。此外,在实际安装中,电源电缆和信号的多样性以及所有混乱视觉空间的测量/控制仪器都会破坏对要掌握的基本概念的整体理解。
2023年是自罗德尼·劳登(Rodney Loudon)的经典和有影响力的教科书《光量子理论》 [1]出版以来的50年。可悲的是,这也是他去世后的一年。这两个事件的并置使我们建议进行哲学交易,这是一个特殊问题,在该问题中,受邀作者可能至少呈现Rodney和其他先驱者启发的现代量子光学范围的至少一部分。在这篇简短的文章中,我们最简要介绍了量子光学领域及其开发方式。我们的目标只是为随后的论文提供设置。有了事后看来,我们可以看到光量子理论的三个版本如何[1-3],请参见图1与量子光学领域保持同步并标记其进步。
量子资源理论也许是量子物理学史上最具革命性的框架。它在统一必要量子效应的量化方法以及确定在从量子信息到计算等领域的特定应用中优化其实用性的协议方面发挥了重要作用。此外,资源理论已经将相干性、非经典性和纠缠等激进的量子现象从仅仅令人感兴趣转变为有助于实现现实思想。一般的量子资源理论框架依赖于将所有可能的量子态分为两组的方法,即自由集和资源集。与自由态集相关的是,从相应物理系统的自然约束中产生的许多自由量子操作。然后,量子资源理论的任务是发现从受限操作集中产生的可能方面作为资源。随着与标准谐振子量子光学态相对应的各种资源理论的快速发展,广义量子光学态也沿着同一方向取得了重大进展。广义量子光学框架力图引入一些当代流行的思想,包括非线性、PT 对称非厄米理论、q 变形玻色子系统等,以实现与标准量子光学和信息理论相似但更高层次的目标。在本文中,我们回顾了不同广义量子光学状态的非经典资源理论的发展及其在量子信息理论背景下的实用性。
引言——过去几十年来量子光学[1 – 4]的进展使得量子力学的基础测试[5,6]、量子光子态的测量[7 – 9]和量子技术的实现[10 – 14]成为可能。这些成就源于光子探测方案的发展,例如汉伯里·布朗-特威斯实验[15]、符合测量[6]、光子数分辨探测器[16,17]和用于量子态层析成像[18 – 20]的同差探测[7 – 9]。传统的量子光探测器依赖于光子与固态系统(如雪崩光电二极管[21 – 23]、超导纳米线[24,25]和光电倍增管[26,27])的相互作用。其他灵敏的量子光学探测器依赖于与有效两能级系统(例如原子、囚禁离子或超导量子比特)的光子相互作用 [28 – 32]。更先进的检测方案促进了光学非线性以增加检测带宽 [33,34]。然而,当前的量子光学技术在空间分辨率方面受到限制,并且由于电子元件的响应时间而限制了检测速率和带宽。在这里,我们提出了一种使用自由电子-光子纠缠 [35 – 37] 进行量子光子态层析成像的量子光学检测方案。我们展示了同质型自由电子与光子态的相互作用(图 1)如何通过电子能谱测量在相空间中提取有关该状态的最大信息。这种方法,我们称之为自由电子量子光学检测(FEQOD),具有由电子-光子耦合强度设定的基本信息限制,允许
量子技术正在迅速发展,并有可能创新沟通和计算远远超出当前的可能性。在适合运行量子技术协议的可能的平台形式中,在过去的几十年中,量子光学元件对光学系统的可用性和多功能性受到了很多关注。除了研究量子力学的基本原理外,还为多种应用(例如量子状态工程,量子通信和量子加密协议),增强的元学和感测,量子光学整合循环,量子成像和量子生物学效应进行了研究。在本期特刊中,我们收集了一些论文,还对一些最近的研究活动进行了综述,这些研究表明了量子光学技术在量子技术的发展中的潜力。
光子是量子信息的强大载体,可通过卫星在自由空间中传输,也可通过地面光纤在长距离中传输。长距离量子态纠缠可以实现量子计算、量子通信和量子传感。量子光学存储器可以有效地存储和操纵量子态,这使其成为未来长距离量子网络中不可或缺的元素。在过去的二十年里,高保真度、高效率、长存储时间和有希望的复用能力的量子光学存储器已经得到开发,特别是在单光子水平上。在这篇综述中,我们介绍了常用量子存储协议的工作原理,并总结了量子存储演示的最新进展。我们还对未来的量子光学存储设备进行了展望,这些设备可能实现长距离纠缠分布。