摘要 - 基于Algan的深紫外线发光二极管(DUV LED)的外部量子效率(EQE)由于电子泄漏的主要问题而远非令人满意阻塞层(P-EBL)可以在该界面附近诱导电子积累和孔耗尽,从而导致电子泄漏并阻碍孔注入。在本文中,我们提出了在LQB和P-EBL之间插入的Al-Composition Increasing Algan层(ACI-ALGAN),以增强DUV LED的载体注入能力,通过调节LQB/EBL界面和下层机制在LQB/EBL界面上调节偏振产生的表电荷产生的床单,并通过数字计算分析。插入结构可以消除LQB的P侧界面处的正电荷,并在P-EBL的N侧界面附近诱导孔积累,这随后可以减少电子泄漏和偏爱孔注射。提出的带有ACI-Algan层的DUV LED结构表现出增强的EQE 45.7%,其正向电压保持不变。此设计方案可以提供另一种方法来促进使用各种应用程序的DUV LED的性能。
er掺杂的Si发光二极管可能在硅光子学和光学量子计算中找到重要的应用。这些二极管在反向偏置时表现出比正向偏置高2个数量级的数量级。但是,这些设备中影响激发的物理学在很大程度上尚未探索。在这项工作中,我们制造了一个ER/O/B CODOP的SI发光二极管,该二极管通过对电子的撞击激发表现出很强的电致发光。建立了一种分析影响 - 激发理论,以预测与实验数据非常吻合的电致发光强度和内部量子效率。从配件中,我们发现可兴奋的ER离子达到了1个创纪录的浓度。8×10 19厘米-3及其45%的通过撞击激发处处于激发状态。 这项工作对基于半导体的稀土元素开发有效的经典和量子光源具有重要意义。通过撞击激发处处于激发状态。这项工作对基于半导体的稀土元素开发有效的经典和量子光源具有重要意义。
有机半导体是无序的分子固体,因此,它们的内部电荷产生动力学,电荷传输动力学,最终由它们所构成的光电设备的性能由能量疾病控制。这对于新兴的光伏技术尤其相关,其中可提取功率直接取决于这些动力学。为了确定能量障碍如何影响电荷发生,激子传输,电荷传输以及有机半导体设备的性能,首先需要一种准确的方法来衡量此关键参数。在这项工作中,可以证明有机半导体的静态疾病可以从其光伏外部量子效率谱从吸收开始附近的波长处获得。与计算框架一起介绍了一种详细的方法,用于量化与单重激子相关的静态能量障碍。此外,作者还表明,将光学干扰的限制效应最小化对于实现高临界量化至关重要。最后,采用透明设备来估计几种具有技术相关的有机半导体供体 - 受体混合物的激发静态疾病,包括高效率有机光伏系统PM6:Y6。
卤化铅钙钛矿纳米晶体(LHP NC)具有诸多优良特性,包括宽范围的带隙可调性、可忽略的电子-声子耦合1、大的吸收截面2和窄的发射线宽,此外还具有溶液加工性、低成本合成和与其他现有器件组件的兼容性3,4,是潜在光电应用的有前途的材料,例如发光显示器、激光器和用于大面积可印刷光收集装置的纳米晶体墨水。5 – 10然而,尽管它们具有高量子产率(QY)和表面不敏感性,但基于溶液加工钙钛矿的第一个发光二极管(LED)的外部量子效率却不到 0.2%。 11 需要持续努力了解电子空穴复合途径和选择性改进辐射途径,才能将性能提高到约 15%。12 这主要是通过解决诸如增加高移动电荷的限制、配体交换和配体密度控制、表面缺陷钝化、掺杂和抑制俄歇非辐射复合等问题来实现的。13 – 17 然而,对
在光学和微波域之间转换信号的新策略可能在推进古典和量子技术方面起关键作用。传统的光学到微波转导的方法通常会扰动或破坏针对光线强度编码的信息,从而消除了这些signals进一步处理或分布的可能性。在本文中,我们引入了一种光学到微波转换方法,该方法允许对微波光子信号进行检测和光谱分析,而不会降低其信息含量。使用与压电电换能器集成的光力学波导证明了此功能。该系统内有效的机电和光力耦合允许双向光学到微波转换,量子效率高达-54.16 dB。通过在通用布里渊散射中保存光场包膜时,我们通过通过一系列具有独特的共振频率的电动机电sepguments传输光学信号来证明多通道微波光谱过滤器。这种电力力学系统可以为微波光子学中的遥感,通道化和频谱分析提供灵活的策略。
本报告涉及基于ZnO纳米棒(NRS)的新型紫外线(UV)光电探测器(PD),使用化学浴物(CBD),ZnO纳米棒(NRS),涉及ZnO纳米棒(NRS),ZnO/ppc上的可蛋白质氧化聚丙烯(PPC)底物(PPC)底物(ZnO/PPC)。通过利用X射线衍射(XRD),Fiff-ELD发射扫描电子显微镜(FESEM),能量分散X射线光谱(EDX)和UV – VIS分心仪,研究了样品的结构,形态和光学特性。ZnO/PPC PD的光敏度值分别为52.48、47.46和42.53,分别为385 nm的波长,分别为5、10和15 V。当ZnO/PPC(PD)在5、10和15 V偏置电压下为375、385和405 nm的ON/OFF紫外线脉冲照明时,响应和恢复时间是良好的值。在385 nm的5 V和15 V下,电流增益和量子效率的最大值分别为1.52和550.7。2020 Elsevier B.V.保留所有权利。
1。Stolterfoht M,Grischek M,Caprioglio P等。如何量化整洁的钙钛矿膜的效率潜力:隐含效率超过28%的钙钛矿半核对象。ADV MATER。2020; 32(17):2000080。 doi:10.1002/adma.202000080 2。Hages CJ,Redinger A,Levcenko S等。在非理想的半导体中识别实际的少数族载体寿命:Kesterite材料的案例研究。adv Energy Mater。2017; 7(18):1700167。 doi:10.1002/aenm。 2017001673。DeMello JC,Wittmann HF,朋友RH。 改进了外部光致发光量子效率的实验确定。 ADV MATER。 1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。 Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。2017; 7(18):1700167。 doi:10.1002/aenm。2017001673。DeMello JC,Wittmann HF,朋友RH。改进了外部光致发光量子效率的实验确定。ADV MATER。1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。 Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。Katahara JK,Hillhouse HW。QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。J Appl Phys。2014; 116(17):173504。 doi:10.1063/1.4898346 5。Braly IL,Dequilettes DW,LM等人的Pazos-Out。杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。nat光子学。2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。2018; 12(6):355-361。 doi:10。1038/s41566-018-0154-Z 6。Frohna K,Anaya M,Macpherson S等。纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。纳米技术。2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div>wurfelP。辐射的化学潜力。J Phys C:固态物理。rau U.Phys Rev b。1982; 15(18):3967-3985。 doi:10.1088/0022-3719/15/18/012 8。 光伏量子效率与太阳能电池的电发光发射之间的相互关系。 2007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。 Caprioglio P,Wolff CM,Sandberg OJ等。 关于钙钛矿太阳能电池中理想因子的起源。 adv Energy Mater。 2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。 Sarritzu V,Sestu N,Marongiu D等。 混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。 SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-21982; 15(18):3967-3985。 doi:10.1088/0022-3719/15/18/012 8。光伏量子效率与太阳能电池的电发光发射之间的相互关系。2007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。 Caprioglio P,Wolff CM,Sandberg OJ等。 关于钙钛矿太阳能电池中理想因子的起源。 adv Energy Mater。 2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。 Sarritzu V,Sestu N,Marongiu D等。 混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。 SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。Caprioglio P,Wolff CM,Sandberg OJ等。关于钙钛矿太阳能电池中理想因子的起源。adv Energy Mater。2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。Sarritzu V,Sestu N,Marongiu D等。混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-2SCI代表。2017; 7(1):44629。 doi:10.1038/srep44629 11。Richter JM,Abdi-Jalebi M,Sadhanala A等。通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。nat Commun。2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div>Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。J Phys Chem Lett。2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22017; 8(20):5084-5090。 doi:10。1021/acs.jpclett.7b02224 13。Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-2Davies CL,Filip MR,Patel JB等。双分子重组三碘化物钙钛矿是一个反吸收过程。nat Commun。2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22018; 9(1):293。 doi:10.1038/s41467-017- 02670-2
快速崛起的固态光子探测器类型为记录和标记光子时间提供了简单、廉价和坚固的工具。超导光子探测器,无论是超薄超导纳米条带还是过渡边缘传感器的形式,都是目前性能最高的设备,尤其是在近红外光谱中。这些设备通常用于量子信息实验。它们表现出高量子效率、MHz 计数率和非常低的抖动,并且可以用作光子数和/或光子能量分辨设备。在过去的 30 年里,人们基于各种材料开发了专门用于单光子计数的雪崩光电二极管。它们已被用于光学传感器、量子密码学、光学测距和激光雷达、时间分辨光谱、激光诱导荧光、天文学和光学时间传输等众多应用。最后,基于各种纳米结构和纳米器件的光子计数器以及用于防扩散、安全和医疗用途的高能辐射光子探测器领域正在快速发展。本次会议将聚集学术、工业、空间相关、物理和研究领域的贡献研究社区的听众。
简介:科学计数法和有效数字。不同系统中的单位。矢量:矢量回顾、矢量导数、线积分和面积分、标量的梯度。力学:坐标系。恒定加速度下的运动,牛顿定律及其应用,匀速圆周运动。涡旋运动,摩擦力。功和能量。势能、能量守恒、能源和我们的环境。静电和磁学:库仑定律、高斯定律、导体周围的电场、电介质。磁场。电流上的磁力。半导体物理学:半导体中的能级、空穴概念、本征区域和非本征区域、质量作用定律、P-N 结、晶体管。波和振荡:具有一个自由度的系统的自由振荡、经典波动方程。连续弦的横模。驻波。波的色散关系。光学与激光:光学和激光的基本介绍。衍射光栅。激光器,粒子数反转。谐振腔。量子效率。氦氖激光器、红宝石激光器和二氧化碳激光器。现代物理学:光电效应、康普顿效应、氢原子的玻尔理论、原子光谱、质量减小、德布罗意假设、布拉格定律、电子显微镜、塞曼效应、原子核、质能关系、结合能、核力和基本力、指数衰减和半衰期。
这项研究采用简单的热液(HT)方法来合成五氧化钒(V 2 O 5)纳米材料。V 2 O 5的固有局限性,包括低量子效率和光敏度不足,限制了其增强光催化活性的潜力。该研究研究了通过退火通过退火研究甲基橙(MO)和刚果红(CR)染料的光降解。X射线衍射(XRD)和拉曼光谱学证实了V 2 O 5的组成,而SEM用于观察封装的纳米颗粒的形态。使用紫外线(UV)光谱法估计V 2 O 5的带隙在2.51和2.73 eV之间。此外,分析了亚甲基蓝(MB)染料的光降解,钙化的V2O5在90分钟内实现了MB的76%降解效率。对于CR和MO,在20 mg/L染料浓度下,降解率在200分钟内达到97.91%和86%。MB降解的反应速率常数确定为8.19 x10⁻⁵s⁻。总体而言,HT合成的V 2 O 5由于其可见光吸光度提高而表现出增强的光催化活性,从而促进了偶氮染料的更有效的光降解。