光纤波导:光纤的传输特性:衰减。石英玻璃光纤中的材料吸收损耗:固有吸收、外部吸收。线性散射损耗:瑞利散射、米氏散射。非线性散射损耗:受激布里渊散射、受激拉曼散射。光纤弯曲损耗、纤芯和包层损耗。色散:模内色散:材料和波导色散。模间色散:多模阶跃折射率光纤、多模渐变折射率光纤。光纤总色散。光源、接头和连接器:发光二极管 (LED):原理。LED 结构:平面 LED、圆顶 LED、表面发射 LED、边缘发射 LED、超辐射 LED。量子效率和 LED 功率、LED 调制。LED 特性:光输出功率、输出光谱、调制带宽、可靠性。激光二极管:原理、光反馈和激光振荡、激光振荡的阈值条件。激光类型:分布式反馈激光器、单模激光器。
摘要:本文介绍了一种使用低成本溶液处理技术制造有机基器件的方法。在环境条件下,在 ITO 涂层玻璃基板上制造了一种氯取代的二维共轭聚合物 PBDB-T-2Cl 和 PC 71 BM 支持的纳米胶囊水合五氧化二钒 (HVO) 的混合异质结作为空穴传输层 (HTL) 光电探测器。该器件形成了一个优异的有机结二极管,整流比良好,约为 200。该器件在光电导模式(反向偏置)和绿光波长的零偏置下还表现出优异的光电检测特性。本文报道了非常高的响应度 ~6500 mA/W 和 1400% 的高外部量子效率 (EQE)。所提出的有机光电探测器分别表现出优异的响应和恢复时间 ~30 和 ~40 毫秒。
到目前为止,已经探索了许多无金属TADF分子,以高效率为蓝色,绿色和红色的电脑(EL),其最大外部量子效率(EQE MAX)分别超过38%,11 37%12和27%,分别为13。尽管出现了出色的EQE值,但由于较高的能量水平和更长的兴奋状态寿命,蓝色OLED往往显示出比绿色和红色的稳定性差得多。14,15尽管设备寿命是进一步商业化OLED的关键参数,但在各种文献研究中通常不会收集或提及。16要解决蓝色TADF OLED的固有不稳定,替代策略已被广泛使用并被证明是最有效的方法之一。duan和同事通过将TERT - 丁基取代基作为空间盾牌引入了有效和稳定的蓝色TADF发射器,这不仅提高了光致发光的效率,而且还提高了TADF分子的稳定性。17因此,在
摘要:准确从理论角度描述硼二吡咯亚甲基 (BODIPY) 分子的电子结构一直是一个难题,更不用说预测荧光量子效率了。在本文中,我们表明,可以通过自旋翻转时间相关密度泛函理论和 B3LYP 函数准确地评估 BODIPY 的电子结构。利用得到的电子结构,我们之前开发的热振动关联函数方法成功再现了代表性 BODIPY 的实验谱线形状。最重要的是,提出了一种双通道方案来描述 BODIPY 中 S 1 到 S 0 的内部转换:通道 I 通过在谐波区域内的直接振动弛豫实现,通道 II 则通过远离谐波区域的扭曲的 S 0 /S 1 最小能量交叉点实现。该双通道方案可以准确预测荧光量子产率,因此可以作为预测有机荧光化合物光物理参数的通用方法。
简称量子点LED 扩展标题基于胶体量子点的发光二极管描述光子纳米材料小组旨在利用胶体量子点(QD)的独特性质开发在可见光和短波红外光谱范围内工作的发光二极管。QD化学能够按需定制最终纳米材料的发光特性,结合溶液处理,能够低成本制造发光二极管(LED)。目前,该小组正致力于开发两种主要类型的基于QD的LED(小型或大型):基于InAs或Hg基QD的短波红外LED(940 – 1600 nm)和利用CdSe、钙钛矿或Ga基QD的蓝光LED(400-450 nm)。博士候选人将专注于QD的合成及其精心设计的LED的实现,以获得高的外部量子效率和亮度。此外,博士候选人将对合成的
通过紫外线LED设备实现的效率提高导致了过去几年紫外线LED水处理的研究报告的大幅度增加。本文根据有关紫外线LED驱动过程的水消毒过程的适用性和性能的最新研究提出了深入的评论。分析了不同的紫外线长度及其组合的影响,以使各种微生物失活和抑制重对机理。虽然265 nm UVC LED具有更高的DNA损伤电位,但据报道280 nm辐射抑制光电反应和深度修复。当耦合UVB + UVC耦合时,尚无协同效应,而顺序的UVA-UVC辐射似乎增强了失活。 还分析了脉冲对持续辐射的对杀菌作用和能量消耗的持续辐射的好处,但具有不确定的重复。 但是,脉冲辐射可能有望改善热管理。 作为一个挑战,使用UV LED来源的使用引入了光分布中的显着不均匀性,从而推动开发拟定的仿真方法,以确保实现目标微生物所需的最低目标剂量。 征服能耗,选择紫外线LED的最佳波长需要在该过程的量子效率与电力到光子转换之间妥协。 在接下来的几年中,紫外线LED行业的预期发展是UVC领导的一项有前途的大规模水消毒技术,在不久的将来可能在市场上具有竞争力。尚无协同效应,而顺序的UVA-UVC辐射似乎增强了失活。对杀菌作用和能量消耗的持续辐射的好处,但具有不确定的重复。但是,脉冲辐射可能有望改善热管理。作为一个挑战,使用UV LED来源的使用引入了光分布中的显着不均匀性,从而推动开发拟定的仿真方法,以确保实现目标微生物所需的最低目标剂量。征服能耗,选择紫外线LED的最佳波长需要在该过程的量子效率与电力到光子转换之间妥协。在接下来的几年中,紫外线LED行业的预期发展是UVC领导的一项有前途的大规模水消毒技术,在不久的将来可能在市场上具有竞争力。
由于其无与伦比的定时分辨率和量子效率,超导纳米线单光子探测器(SNSPD)已成为Quantum Optics的主要技术。SNSPD可以以高于5 t的磁场的高速率以极高的检测效率运行,而深色计数速率接近零。效果,以新型的超导电子设备作为混合低温性驱动器读取结构,以开发低功率的冷冻量读数ASIC。由于纳米线是核和粒子物理领域中相对较新的技术,因此拟议的研发计划将研究超导纳米线传感器,超导电子设备以及原型Crocecmos Front-End End End ASIC的辐射硬度。我们将在高背景辐射环境中运行时测试这些设备的性能。我们还将研究暴露于强烈的电子,中子和伽马辐射来源的超级传导设备的辐射硬度,以识别传感器的失效模式,否则,预计会很难辐射。
传统的测量爱因斯坦-波多尔斯基-罗森型连续变量量子纠缠的方法依赖于平衡零差检测,而平衡零差检测对由于探测器量子效率、被检测场与本振模式失配等因素引起的损耗耦合进来的真空量子噪声非常敏感。本文提出并分析了一种利用高增益相敏参量放大器辅助平衡零差检测实现的测量方法。相敏放大器的使用有助于解决因检测损耗引起的真空量子噪声。此外,由于高增益相敏放大器可以耦合两种不同类型的场,因此所提方案仅使用一次平衡零差检测便可揭示两种不同类型场之间的量子纠缠。进一步分析表明,在多模情况下,所提方案也优于传统方法。这种测量方法在涉及连续变量测量的量子信息和量子计量学中有着广泛的应用。
Excelitas Technologies 的 C30645 和 C30662 系列 APD 是高速、大面积 lnGaAs/lnP 雪崩光电二极管。这些设备在 1100 nm 至 1700 nm 的光谱范围内提供大量子效率 (QE)、高响应度和低噪声。它们针对 1550 nm 波长进行了优化,适用于人眼安全的激光测距和 LiDAR 系统。我们的 -7 低噪声产品利用我们最近对 iii-v 晶圆生长和加工设施的重大投资,提供显著降低的噪声规格,为用户提供更好的 SNR,从而在相同激光输出功率下增加范围。这些 APD 采用密封的 TO-18 封装或陶瓷载体提供。还提供定制包装。请联系 Excelitas 进一步讨论包装细节。Excelitas 致力于为客户提供最优质的产品。 Excelitas Technologies 已通过 ISO-9001 认证,我们的部件设计符合 MIL-STD-883 和/或 MIL-STD-750 规范。所有设备均经过长时间老化和定期工艺鉴定程序,以确保高可靠性。
胶体半导体量子点/石墨烯范德华 (vdW) 异质结利用量子点 (QDs) 增强的光物质相互作用和光谱稳定性以及石墨烯中卓越的电荷迁移率,为增益或外部量子效率高达 10 10 的非制冷红外光电探测器提供了一种有前途的替代方案。在这些 QD/石墨烯范德华异质结构中,QD/石墨烯界面在控制光电过程(包括激子解离、电荷注入和传输)方面起着关键作用。具体而言,范德华界面处的电荷陷阱会增加噪声、降低响应度和响应速度。本文重点介绍了我们在设计范德华异质结界面以实现更高效的电荷转移、从而获得更高的光响应度、D* 和响应速度方面的最新进展。这些结果表明范德华异质结界面工程在 QD/石墨烯光电探测器中的重要性,这可能为低成本、可印刷和灵活的红外探测器和成像系统提供有前途的途径。