1. 量子力学 1.1. 斯特恩·格拉赫 1.2. 马赫-曾德干涉仪 1.3. 量子力学的假设 1.4. 薛定谔方程 1.5. X、P 交换子和海森堡原理 1.6. EV 炸弹 2. 量子计算 2.1. 单量子比特系统 2.1.1. 什么是量子比特 2.1.2. 叠加 2.1.3. 布雷克特符号和极坐标形式 2.1.3.1. 状态向量形式 2.1.3.2. 概率幅 (玻恩规则) [附证明] 2.1.4. 布洛赫球和二维平面 2.2. 测量 I: 2.2.1. 测量假设 - 测量时状态崩溃 2.2.2. 统计测量 2.2.2.1 QC 作为概率分布 2.2.2.2. 来自采样的概率 2.3. 单量子比特门 2.3.1. 旋转-计算-旋转 2.3.2. 幺正门计算 2.3.3. 泡利旋转的普遍性 2.4. 多量子比特系统 I: 2.4.1. 通过张量积实现多量子比特叠加。 2.4.2. 多量子比特门 2.4.2.1. 本机(CNOT) 2.4.2.2. 单量子比特门组合 2.4.2.3. 泡利 + CNOT 普遍性 2.4.3. 德意志-琼扎实验 2.4.4. 无克隆定理 2.5. 纠缠 2.5.1. 贝尔态 2.5.2. 密度矩阵 2.5.3. 混合态 2.5.4.量子隐形传态 2.6. 测量 II: 2.6.1. 量子算子 2.6.2. 射影测量
可以肯定地说,当今的计算机比70年前的计算机快得多。与现在的标准相比,当时的计算机很大,沉重,容量和处理速度非常有限。我们可以将量子计算机视为同一状态,就像一种仍然昂贵,笨重且具有许多研究潜力的新兴技术
半个多世纪以来,蛋白质折叠一直是最困难的问题之一,随机热运动导致构象变化,从而导致能量下降到天然结构,这是漏斗状能量景观中捕获的原理。未折叠的多肽具有广泛的可能构象。由于潜在构象随链长呈指数增长,搜索问题对于经典计算机来说变得难以解决。到目前为止,有理论和实验证据表明,使用量子退火、VQE 和 QAOA 等量子计算方法解决此类优化问题具有优势。虽然谷歌的 DeepMind-AlphaFold 已经取得了很大成就,但我们可以通过量子方法走得更远。在这里,我们展示了如何使用变分量子特征求解器预测蛋白质结构以及 RNA 折叠,并使用条件风险值 (CVaR) 期望值来解决问题并找到最小配置能量,我们的任务是确定蛋白质的最小能量结构。蛋白质的结构经过优化以降低能量。还要确保满足所有物理约束,并将蛋白质折叠问题编码为量子比特算子。
VizConnect, Inc. 专门为公司提供战略业务发展咨询服务。该公司的服务组合包括房地产收购和开发、股权建设、创收和资产收购。VizConnect 战略业务路线图的第一阶段针对四个关键行业领域,并将其核心经济增长支柱集中在房地产开发、绿色能源生产、医疗/制药和颠覆性先进技术领域,包括人工智能计划和基于区块链的平台解决方案,提供广泛的市场参与和多样化的合作与发展机会。该公司经验丰富的团队致力于提高客户价值、最大限度地发挥现有能力、提高股东绩效和盈利能力、提高成本效率、通过持续改进分析优化业务工作流程并简化业务战略以取得成功的结果。
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
在这项工作中,我们使用噪声中尺度量子 (NISQ) 框架,获得了 Bardeen-Cooper-Schrieffer (BCS) 哈密顿量的间隙。这可能会对超导研究产生有趣的影响。对于这样的任务,我们选择使用变分量子压缩并分析在当前量子硬件上找到能谱所需的硬件限制。我们还比较了两种不同类型的经典优化器,即线性近似约束优化 (COBYLA) 和同时扰动随机近似 (SPSA),并研究在实际设备中使用模拟时噪声存在引起的退相干的影响。我们将我们的方法应用于具有 2 和 5 个量子比特的示例。此外,我们展示了如何在一个标准差内近似间隙,即使存在噪声。
量子信息处理正在从纯粹的学术学科稳步发展,转向整个科学和行业的应用。从基于实验室的,概念验证实验过渡到量子信息处理硬件的稳健,集成的实现是此过程的重要一步。但是,传统实验室设置的性质并不容易扩大系统大小或允许在实验室级环境之外的应用。这种过渡需要克服工程和集成方面的挑战,而无需牺牲实验室实施的最先进绩效。在这里,我们提出了一个19英寸的机架量子计算演示器,基于线性保罗陷阱中的40个CA +光学Qubits,以应对许多此类挑战。我们概述了机械,光学和电气子系统。此外,我们描述了量子计算堆栈的自动化和远程访问组件。我们通过描述与量子计算相关的表征测量结果,包括站点分辨的单量相互作用,以及通过Mølmer-Sørensen相互作用通过两种不同的地址方法提供的Mølmer-Sørensen相互作用进行纠缠。使用此设置,我们生产最大的纠缠的Greenberger-Horne-Zeilinger状态,最多24个离子,而无需使用后选择或误差缓解技术;与公认的常规实验室设置相提并论。
