b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
简介。最近的Moiré材料激增已大大扩大了具有强相关电子的实验平台的数量。虽然相关的绝缘状态和扭曲双层石墨烯中的超导性[1-4]的超导能力启动,但过渡金属二分法(TMD)材料的双层中电子相关性的强度超过了石墨烯cousins中的材料[5]。在TMD中进行的实验揭示了Mott绝缘子的特征[6-10],量子异常的霍尔效应[11]和 - 在杂词中 - 分数纤维上的莫特 - 木晶体[7,12-16]。当电子电荷定位时,只有自旋程度仍然存在,并且在最近的实验中开始研究TMDMoiréBiLayers中的杂志[17-19]。Heterobilayers在三角形晶格上意识到了一个诱导的Hubbard模型[20-23],因此,局部旋转非常沮丧。这种挫败感可能会导致旋转液相,这是一种异国情调的物质,其物质实现一直在寻求[24,25]。在这封信中,我们表明n =±3 /4的通用Mott-Wigner状态报告了WSE 2 / WS 2双层[12,13]的填充状态,可以实现手性旋转液体[26,27]和Kagome Spin液体(KSL)[28-33]。在这种特殊的填充下,电子位于有效的kagome晶格上,该晶格以其高度的几何挫败感而闻名。TMD双层的可调节性 - 更换扭曲角度,栅极调整,材料在这里,我们证明了现实的模型参数如何导致该kagome晶格的有效自旋模型,并使用广泛的最新密度矩阵构造组(DMRG)模拟研究模型[34,35]。
fi g u r e 4微生物活性在原位24小时孵育和前坐骨长期实验室孵育中。在(a)Mittivakkat冰样品,(b)Langjökull雪样品和(c)Langjökull冰样品中的细菌的活性分数(通过Boncat确定)。显示了均位于原位(即在冰川表面上)的孵育(一式三份)和实验室在2°C的实验室孵育的前静电序列,从-20°C的6个月储存(以单次)为单位。孵育时间(天)表示添加HPG(“预孵育”)和与HPG 24小时(“ HPG结构”)之前的孵育期和24小时的总和。小提琴图的外部形状表示数据的内核密度分布,其中较宽的部分表明数据密度较高。
Geagea Elieve,Daniel-Lopez,Luca Giovanelli,Laurent Nony,Christian Loppacher等。天文台C,2024,128(21),pp.8601-8610。10.1021/acs.jpcc。04729690
1个MAT阐述中心和结构研究,国家科学研究中心,研究清洁8011,29 Rue J. Marvig,BP 94347,Cedex 4,31055法国图卢兹; alain.couret@cemes.fr(A.C。); lise.durand@cemes.fr(l.d.)2大学ÉtoulouseIII-保罗·萨巴蒂尔(Paul Sabatier),118号纳博恩路线,塞德克斯9,31062法国图卢兹3劳伦斯·利弗莫尔国家实验室,7000 East Av。,Livermore,Livermore,CA 94550,美国,美国; voisin2@llnl.gov 4化学研究所和马特·riaux Paris-Est,研究单位混合7182,2-8,Rue Henri Dunant,94320 Thiais,法国; Zo fi a.trzaska@univ-paris13.fr 5 Universit é Sorbonne Paris Nord, 99, avenue Jean-Baptiste Cl é ment, 93430 Villetaneuse, France 6 Onera—The French Aerospace Lab, Department of Materials and Structures, University É Paris-Saclay, 29 avenue de la Division Leclerc, BP 72, 92322 Cedex, France; marc.thomas@onera.fr *通信:monchoux@cemes.fr
最初发表于:Diulus,J Trey; Novotny,Zbynek;东芬,南昌;贝科德,扬; Al-Hamdani,Yasmine;尼古隆Comini; Muntwiler,Matthias;亨斯伯格,马蒂亚斯; Iannuzzi,Marcella;奥斯特瓦尔德(Jürg)(2024)。h-bn/金属氧化物界面通过插入生长:纳米固定催化的模型系统。物理化学杂志C,128(12):5156-5167。doi:https://doi.org/10.1021/acs.jpcc.3c07828
这项工作的目的是确定从材料接触中创建多层阴极的可能性,其在薄金属基板上的不同输出的不同输出,以及在微型流中,在电子流的交叉部分中形成密集的胶带和环的实际使用,但高电量设备。方法。gafnii层(𝑒3〜3。5 eV)和铂(𝑒3〜5。3 eV)分别使用相当简单且操作的Magnetron喷涂方法顺序将10 nm和2 nm依次应用于金属箔底物的侧面。阴极由箔制成,并用多层涂层在电子束的横截面中形成胶带和环。在三极管电子光学系统中产生了多层阴极发行特性及其形成的光束的实验测量,其中包括控制电极(阳极)和选举收集器的阴极以Pharanda圆柱体的形式进行。测量是在技术真空10-7的条件下进行的。。。10-8 Torr。 结果。 实验定义了由三极管电子光系统形成的电子流的横截面的特征和环在薄铝基板(9微米)和坦塔鲁斯(10微米)上形成的电子流的横截面。 测量了从阴极的电流对Cato室和控制电极之间电压(Volt-Ampere特性)之间的电压的依赖性,以及所形成的束的电子光系统中电流的变化。 结论。 。 。10-8 Torr。结果。实验定义了由三极管电子光系统形成的电子流的横截面的特征和环在薄铝基板(9微米)和坦塔鲁斯(10微米)上形成的电子流的横截面。测量了从阴极的电流对Cato室和控制电极之间电压(Volt-Ampere特性)之间的电压的依赖性,以及所形成的束的电子光系统中电流的变化。结论。。。在本文中,在电子流的薄金属基板上使用多层天主管在电子流的薄金属基板上进行了形成,并在高达300的田间发射场的横截面中,电流的横截面最大为几米,平均水平极大。400 A/cm 2。在选择技术真空中选择大型田间发射时,研究的阴极稳定运行的可能性。
图1。A)在PT/INGA/N -SI/SIO/SIO X/PT下,AO-ECL发射(AO-ECL)的方案是由EXC光子吸收触发的。b)电荷传输机制的方案,导致可见的440-nm光子在固体界面处产生。c)在PT/INGA/INGA/N -SI/SIO X/PT(CYAN曲线)和电解质吸收(灰色曲线)时,在PT/INGA/N -SI/N-SIO/SIO X/PT(灰色曲线)时,在PT/INGA/N -SI/N-SI/N-SIO/SIO X/PT(灰色曲线)处的IR 850 nm LED(棕色曲线)的归一化光谱。si bandGap由虚线的黑线表示,由AO-ECL诱导的波长的移位由红色箭头表示。d)N -Si/Sio X的XPS调查光谱,在涂层之前(橙色曲线)和N -SI/SIO X/PT的N -Si/Sio X/PT,在溅射2 nm厚的PT膜(粉红色曲线)后。
一开始是定位的缩放理论。Boomer物理学家1被培养为认为没有二维金属,因为任何含量的疾病都会导致定位和绝缘行为2。他们了解到,微调金属行为可以在超导体 - 绝缘体过渡的量子临界点上表现出来,并通过磁场或混乱来调节,并且对超导膜的早期实验似乎证实了这张图片:超导能力:超导对过渡的一侧,在过渡的一侧,在另一种和关键的金属状态下进行隔离。但从1990年开始,实验表明没有关键的金属状态,而是整个金属阶段开始积累。这种异常的金属状态(AMS)是不寻常的,因为除其他外,其电导率σxx(t→0)的升级为低于正常状态Drude理论的值。另一个异常是观察到的幂律缩放r xx〜(h-h 0)α(t)